
Modeling

Simulation

Implementation

xPC Target
 For Use with Real-Time Workshop ®

User’s Guide
Version 1

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

xPC Target User’s Guide
 COPYRIGHT 1999 - 2001 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: September 1999 First printing New for Version 1.0 (Release 11.1)
November 2000 Online only Revised for Version 1.1 (Release 12.0)
June 2001 Online only Revised for Version 1.2 (Release 12.1)

i

Contents

1
Introduction

What Is xPC Target? . 1-3

2
Advanced Procedures

I/O Driver Blocks . 2-3
xPC Target I/O Driver Blocks . 2-3
Adding I/O Blocks with the xPC Target Library 2-4
Adding I/O Blocks with the Simulink Library Browser 2-7
Defining I/O Block Parameters . 2-10

xPC Target Scope Blocks . 2-13
xPC Target Scope Blocks . 2-13
Adding xPC Target Scope Blocks . 2-13
Defining xPC Target Scope Block Parameters 2-16

Target PC Command Line Interface 2-19
Using Methods and Properties on the Target PC 2-19
Target Object Methods . 2-20
Target Object Properties . 2-20
Scope Object Methods . 2-21
Scope Object Properties . 2-22
Using Variables on the Target PC . 2-24
Variable Commands . 2-24

ii Contents

3
Network Communication

Web Interface . 3-3
Connecting the Web Interface through TCP/IP 3-3
Connecting the Web Interface through RS232 3-4
Syntax for the xpctcp2ser Command . 3-6
Using the Main Page . 3-8
Changing WWW Properties . 3-10
Viewing Signals with the Web Browser 3-11
Using Scopes with the Web Browser . 3-12
Viewing and Changing Parameters with the Web Interface . . 3-13
Changing Access Levels to the Web Browser 3-14

User Datagram Protocol (UDP) . 3-15
What Is UDP? . 3-15
Why UDP? . 3-17
UDP Communication Setup . 3-17
UDP Receive Block . 3-19
UDP Send Block . 3-20
UDP Pack Block . 3-20
UDP Unpack Block . 3-22
UDP Byte Reversal Block. 3-23
UDP Example . 3-23

4
Embedded Option

Introduction . 4-3
DOSLoader Mode Overview . 4-4
StandAlone Mode Overview . 4-4
Architecture . 4-5
Restrictions . 4-6

Updating the xPC Target Environment 4-8

Creating a DOS System Disk . 4-11

iii

DOS Loader Target Applications . 4-12
Creating a Target Boot Disk for DOS Loader 4-12
Creating a Target Application for DOS Loader 4-13

Stand-Alone Target Applications . 4-14
Creating a Target Application for Stand-Alone 4-14
Creating a Target Boot Disk for Stand-Alone 4-15
Using Target Scope Blocks with Stand-Alone 4-15

5
Environment Reference

Environment . 5-3
Environment Properties . 5-3
Environment Functions . 5-11

Using Environment Properties and Functions 5-12
Getting a List of Environment Properties 5-12
Saving and Loading the Environment 5-13
Changing Environment Properties
 with Graphical Interface . 5-14
Changing Environment Properties
 with Command Line Interface . 5-16
Creating a Target Boot Disk with Graphical Interface 5-17
Creating a Target Boot Disk with Command Line Interface . 5-19

System Functions . 5-20
GUI Functions . 5-20
Test Functions . 5-21
xPC Target Demos . 5-21

Environment and System Function Reference 5-23

iv Contents

6
Target Object Reference

Target Object . 6-3
What is a Target Object? . 6-3
Target Object Properties . 6-4
Target Object Methods . 6-9
Target PC Commands . 6-11

Using Target Objects . 6-13
Displaying Target Object Properties . 6-13
Setting the Value of a Target Object Property
 from the Host PC . 6-14
Setting the Value of a Target Object Property
 from the Target PC . 6-15
Getting the Value of a Target Object Property 6-16
Using the Method Syntax with Target Objects 6-17

7
Scope Object Reference

Scope Object . 7-3
What is a Scope Object? . 7-3
Scope Object Properties . 7-3
Scope Object Methods . 7-6

Using Scope Objects . 7-8
Displaying Scope Object Properties for a Single Scope 7-8
Displaying Scope Object Properties for All Scopes 7-9
Setting the Value of a Scope Property . 7-9
Getting the Value of a Scope Property 7-10
Using the Method Syntax with Scope Objects 7-11

1

Introduction

What Is xPC Target? . 1-3

1 Introduction

1-2

xPC Target has many features. An introduction to these features and the xPC
Target software environment will help you develop a model for working with
xPC Target.

This chapter includes the following section:

“What Is xPC Target?” - Host-target PC solution for prototyping, testing, and
deploying real-time systems

What Is xPC Target?

1-3

What Is xPC Target?
xPC Target is a host-target solution for prototyping, testing, and deploying
real-time systems using standard PC hardware. It is an environment that uses
a target PC, separate from the host PC, for running real-time applications.

In this environment you use the desktop computer as a host PC with
MATLAB®, Simulink®, and Stateflow® (optional) to create models using
Simulink blocks and Stateflow diagrams. After creating your model, you can
run simulations in nonreal-time.

xPC Target allows you to add I/O blocks to your model, and then use the host
PC with Real-Time Workshop®, Stateflow Coder (optional) and a C compiler to
create executable code. The executable code is download from the host PC to
the target PC running the xPC Target real-time kernel. After downloading the
executable code, you can run and test your target application in real-time.

1 Introduction

1-4

2

Advanced Procedures

I/O Driver Blocks 2-3
xPC Target I/O Driver Blocks 2-3
Adding I/O Blocks with the xPC Target Library 2-4
Adding I/O Blocks with the Simulink Library Browser . . . 2-7
Defining I/O Block Parameters 2-10

xPC Target Scope Blocks 2-13
xPC Target Scope Blocks 2-13
Adding xPC Target Scope Blocks 2-13
Defining xPC Target Scope Block Parameters 2-16

Target PC Command Line Interface 2-19
Using Methods and Properties on the Target PC 2-19
Target Object Methods 2-20
Target Object Properties 2-20
Scope Object Methods 2-21
Scope Object Properties 2-22
Using Variables on the Target PC 2-24
Variable Commands 2-24

2 Advanced Procedures

2-2

After learning the basic procedures for creating and running a target
application, signal acquisition and parameter tuning, you can try some od the
special and advanced procedures with xPC Target.

This chapter includes the following sections:

• “I/O Driver Blocks” — Adding I/O driver blocks to your Simulink model
connects your model to sensors and actuators.

• “xPC Target Scope Blocks” — Adding xPC Target scopes blocks to your
Simulink model eliminates the need to create and define scopes after the
build process.

• “Target PC Command Line Interface” — Enter commands on the target
PC for stand alone applications not connected to the host PC.

I/O Driver Blocks

2-3

I/O Driver Blocks
You add I/O driver blocks to your Simulink model to connect your model to
physical I/O boards. These I/O boards then connect to the sensors and actuators
in the physical system.

This section includes the following topics:

• “xPC Target I/O Driver Blocks”
• “Adding I/O Blocks with the xPC Target Library”
• “Adding I/O Blocks with the Simulink Library Browser”
• “Defining I/O Block Parameters”

xPC Target I/O Driver Blocks
A driver block does not represent an entire board, but an I/O section supported
by a board. Therefore, the xPC Target library may have more then one block
for each physical board. I/O driver blocks are written as C-code S-functions
(noninlined S-functions). We include the source code for the C-code S-functions
with xPC Target.

xPC Target supports PCI and ISA busses. If the bus type is not indicated in the
driver block number, you can determine the bus type of a driver block by
checking the blocks parameter dialog box. The last parameter is either a PCI
slot for PCI boards, or a Base Address for ISA boards.

2 Advanced Procedures

2-4

Adding I/O Blocks with the xPC Target Library
xPC Target contains an I/O driver library with Simulink blocks. You can
drag-and-drop these blocks from the library to your Simulink model.
Alternately, you can access the I/O driver library with the Simulink Library
Browser. See “Adding I/O Blocks with the Simulink Library Browser” on
page 2-7.

The highest hierarchy level in the library is grouped by I/O function. I/O
functions include A/D, D/A, Digital In, Digital Out, Counter, Watchdog,
Incremental Encoder, RS232, CAN, GPIB, and shared memory. The second
level is grouped by board manufacturer. The manufacturer groups within this
second level contain the specific boards.

This procedure uses the Simulink model xpcosc.mdl as an example of how to
connect an I/O block.

1 In the MATLAB window, type

xpclib

The Library: xpclib window opens.

2 Open a function group. For example, to open the A/D group, double-click the
A/D block.

I/O Driver Blocks

2-5

The manufacturer level opens.

Within each manufacturer group are the blocks for a single function.

3 Open a manufacturer group. For example, to open the A/D driver blocks
from ComputerBoards, double-click the group marked ComputerBoards.

The window with the A/D driver blocks for ComputerBoards opens.

4 In the Simulink window, type

xpcosc

The Simulink block diagram opens for the model xpcosc.mdl.

2 Advanced Procedures

2-6

5 From the block library, click-and-drag the name of an A/D board to the
Simulink block diagram. Likewise, click-and-drag the name of a D/A board
to your model.

Simulink adds the new I/O blocks to your model.

6 Remove the signal generator block and add the analog input block in its
place. Remove the scope block and add the analog output block in its place.

The demo model xpcosc should look like the figure shown below.

Your next task is to define the I/O block parameters. See “Defining I/O Block
Parameters” on page 2-10.

I/O Driver Blocks

2-7

Adding I/O Blocks with the Simulink Library
Browser
You can access the xPC Target driver blocks using the Simulink Library
Browser. You drag-and-drop these blocks from the library to your Simulink
model. Alternately, you can access driver blocks using the xPC Target I/O
driver library, See “Adding I/O Blocks with the xPC Target Library” on
page 2-4.

The highest hierarchy level in the library is grouped by I/O function. I/O
functions include A/D, D/A, Digital In, Digital Out, Counter, Watchdog,
Incremental Encoder, RS232, CAN, GPIB, and shared memory. The second
level is grouped by board manufacturer. The manufacturer groups within this
second level contain the specific boards.

This procedure uses the Simulink model xpcosc.mdl as an example of how to
connect an I/O block.

1 In the MATLAB window type

xpcosc

The Simulink block diagram opens for the model xpcosc.mdl.

2 In the Simulink window, and from the View menu, click Show Library
Browser.

The Simulink Library Browser window opens. Alternately, you can open the
Simulink Library Browser by typing simulink in the MATLAB command
window.

2 Advanced Procedures

2-8

You can access the xPC Target I/O library by right-clicking xPC Target,
and then clicking Open the xPC Target Library.

3 Double-click xPC Target.

A list of I/O functions opens.

I/O Driver Blocks

2-9

4 Open a function group. For example, to open the A/D group for
ComputerBoards, double-click A/D, and then double-click
ComputerBoards.

A list with the A/D driver blocks for ComputerBoards opens.

5 From the block library, click-and-drag the name of an A/D board to the
Simulink block diagram. Likewise, click-and-drag the name of a D/A board
to your model

Simulink adds the new I/O blocks to your model.

6 Remove the signal generator block and add the analog input block in its
place. Remove the scope block and add the analog output block in its place.

The model xpcosc should look like the figure shown below.

2 Advanced Procedures

2-10

Your next task is to define the I/O block parameters. See “Defining I/O Block
Parameters”.

Defining I/O Block Parameters
The I/O block parameters define values for your physical I/O boards. For
example, I/O block parameters include channel numbers for multichannel
boards, input and output voltage ranges, and sample time.

This procedure uses the Simulink model xpcosc.mdl as an example, and
assumes you have added an analog input and an analog output block to your
model. To add an I/O block, see either “Adding I/O Blocks with the xPC Target
Library” on page 2-4 or“Adding I/O Blocks with the Simulink Library Browser”
on page 2-7.

1 In the Simulink window, double-click the input block labeled Analog Input.

The dialog box for the A/D converter opens.

2 Fill in the dialog box. For example, for a single channel enter 1 in the
Number of Channels box, choose ±10 V for the input range, and choose
single-ended (16 channels)for the MUX-switch position. Enter the
same sample time you entered for the step size in the Simulation
Parameters dialog box. Enter the base address for this ISA-bus board.

The Block Parameters dialog box should look similar to the figure shown
below.

I/O Driver Blocks

2-11

3 In the Simulink window, double-click the output block labeled Analog
Output.

The dialog box for the D/A converter opens.

4 Fill in the dialog box. For example, for one channel enter [1] in the Channel
Vector box, for an ouptut level of ±10 V enter the code [-10] in the Range
Vector box. Enter the same sample time you entered for the step size in the
Simulation Parameters dialog box. Enter the base address for this ISA-bus
board.

2 Advanced Procedures

2-12

The Block Parameters dialog box should look similar to the figure shown
below.

If you change the sample time by changing the target object property
SampleTime, the step size you entered in the Simulation Parameters dialog
box, as well as the sample times you entered in both of the I/O blocks are set to
the new value.

Your next task is to build and run the target application, see “Creating the
Target Application” on page 3-7.

xPC Target Scope Blocks

2-13

xPC Target Scope Blocks
Usually scope objects are defined using xPC Target functions or the graphical
interface after downloading your target application. An alternative is for you
to add special xPC Target scope blocks to you Simulink model. These blocks
should not be confused with standard Simulink scope blocks. The xPC Target
scope blocks have unique capabilities when used with xPC Target.

This section includes the following topics:

• “xPC Target Scope Blocks”
• “Adding xPC Target Scope Blocks”
• “Defining xPC Target Scope Block Parameters”

xPC Target Scope Blocks
An xPC Target scope block is added to your model the same way you add any
Simulink block. After adding an xPC Target scope block, you define the
properties of the scope object and the signals you want to display. When the
target application is downloaded to the target PC, the a scope is automatically
created on the target PC. No additional definitions are necessary.

Note The scope object created on the host PC is not assigned to a MATLAB
variable. To assign the scope object, use the target object function getscope.
Also, if you use the function remscope to remove a scope created during the
build and download process, and then you restart the target application, the
scope is recreated.

Alternative methods for creating xPC Target scopes — For information on
using xPC Target functions to create scopes, see “Signal Tracing with MATLAB
Commands” on page 3-35. For information on using the xPC Target graphical
interface to create scopes, see “Signal Logging with xPC Target Graphical
Interface” on page 3-20.

Adding xPC Target Scope Blocks
Adding xPC Target scope blocks to your Simulink model saves you the time to
define and select signals after you download the target application to the target
PC, and the information is saved with your model.

2 Advanced Procedures

2-14

You can drag an xPC Target scope block into any Simulink model, and the
input to the scope can be connected to any block output. If you want to trace
more than one signal, add a multiplexer block to your model, and connect the
scope block to the multiplexer output.

The following procedure uses the Simulink model xpcosc.mdl as an example to
show how to connect an xPC Target scope block to your model.

1 In the MATLAB window type

xpcosc

The Simulink block diagram opens for the model xpcosc.mdl.

2 In the Simulink window, and from the View menu, click Show Library
Browser.

The Simulink Library Browser window opens.

3 Double-click xPC Target.

A list of I/O functions opens.

xPC Target Scope Blocks

2-15

4 Double-click Misc.

A list of miscellaneous group blocks opens.

5 Click-and-drag Scope (xPC) to your Simulink block diagram.

Simulink adds a new scope block to your model with a scope identifier of 1.

2 Advanced Procedures

2-16

6 Connect the xPC Target scope block with the Simulink scope block.

The model xpcosc should look like the figure shown below.

Your next task is to define the xPC Target scope block parameters. See
“Defining xPC Target Scope Block Parameters”.

Defining xPC Target Scope Block Parameters
Scope block parameters define the signals to trace on the scope, trigger modes,
and the axis range.

This procedure uses the Simulink model xpcosc.mdl as an example, and
assumes you have added an xPC Target scope block to your model. To add a
scope block, see “Adding xPC Target Scope Blocks” on page 2-13.

1 Double-click the scope block labeled Scope (xPC).

The Block Parameters dialog box for the scope block opens.

xPC Target Scope Blocks

2-17

2 In the Scope Number box, enter a unique number to identify the scope.
This number is used to identify the xPC Target scope block and the scope
screen on the host or target computers.

3 From the Scope Type list, choose either Host or Target.

4 From the Scope Mode list, choose either Numerical, Graphical
(redraw), Graphical (sliding), or Graphical (rolling).

If you selected Host for the Scope Type, then you can only choose either
Numerical or Graphical (redraw) for the Scope Mode.

5 Select the Grid check box to display grid lines on the scope.

2 Advanced Procedures

2-18

6 In the Y-axis Limits box, enter a row vector with two elements where the
first element is the lower limit of the y-axis and the second element is the
upper limit. If you enter 0 for both elements, then the scaling is set to auto.

7 Select the Start Scope after download check box, to start a scope when
the target application is downloaded. With a target scope, the scope window
open automatically. With a host scope, you need to open the window by
typing xpcscope.

8 In the Number of Samples box, enter the number of values acquired in a
data package before redrawing the graph. In the Interleave box, enter a
value to collect data at each sample time (1) or to collect data at less than
every sample time (2 or greater).

9 From the Target Mode list, choose either FreeRun, Software Trigger,
Signal Trigger, or Scope Trigger.

If you selected Signal Trigger, then in the Trigger Signal box, enter the
index of a signal. In the Trigger Level text box, enter a value for the signal
to cross before triggering. And from the Trigger Slope list choose either,
rising, or falling.

If you choose Scope Trigger, then in the Trigger Scope Number box,
enter the block number of a scope block. If you use this feature, you must
also add a second scope block to your Simulink model.

10 Click OK.

Your next task is to build and run the target application. As soon as the target
application is built and downloaded, a scope and scope object are automatically
created. However, the scope object is not assigned to a MATLAB variable.

Target PC Command Line Interface

2-19

Target PC Command Line Interface
You can interact with the xPC Target environment through the target PC
command window. This interface is useful with stand-alone applications that
are not connected to the host PC.

This section includes the following topics:

• “Using Methods and Properties on the Target PC”
• “Target Object Methods”
• “Target Object Properties”
• “Scope Object Methods”
• “Scope Object Properties”
• “Using Variables on the Target PC”
• “Variable Commands”

Using Methods and Properties on the Target PC
xPC Target uses an object oriented environment on the host PC with methods
and properties. While the target PC does not use the same objects, many of the
methods on the host PC have equivalent target PC commands. The target PC
commands are case sensitive, but the arguments are not case sensitive.

After you have created and downloaded a target application to the target PC,
you can use the target PC commands to run and test your application.

1 On the target PC, press C or move the mouse over the command window.

The target PC command window is activated, and a command line opens. If
the command window is already activated, you do not have to press C. In
this case, pressing C is taken as the first letter in a command.

2 In the Cmd box, type a target PC command. For example, to start your
target application, type

start <enter>

Once the command window is active, you do not have to reactivate it before
typing the next command. For a list of target PC commands, see “Target Object
Methods” on page 2-20, “Target Object Properties” on page 2-20, “Scope Object
Methods” on page 2-21, and “Scope Object Properties” on page 2-22.

2 Advanced Procedures

2-20

Target Object Methods
When using the target PC command line interface, target object methods are
limited to starting and stopping the target application.

The following table lists the syntax for the target commands that you can use
on the target PC. The MATLAB equivalent syntax is shown in the right
column, and the target object name tg is used as an example for the MATLAB
methods.

Target Object Properties
When using the target PC command line interface, target object properties are
limited to parameters, signals, stoptime, and sampletime. Notice the difference
between a parameter index (0, 1, . . .) and a parameter name (P0, P1, . . .).

The following table lists the syntax for the target commands that you can use
on the target PC. The MATLAB equivalent syntax is shown in the right
column, and the target object name tg is used as an example for the MATLAB
methods.

Target PC MATLAB

start tg.start or +tg

stop tg.stop or -tg

reboot tg.reboot

Target PC MATLAB

setpar parameter_index =
number

set(tg, ’parameter_name’,
number)

getpar parameter_index get(tg, ’parameter_name’)

stoptime = number tg.stoptime = number

sampletime = number tg.sampletime = number

set(tg, ’SampleTime’, number)

Target PC Command Line Interface

2-21

Scope Object Methods
When using the target PC command line interface, you use scope object
methods to start a scope, and add signal traces. Notice the methods addscope
and remscope are target object methods on the host PC, and notice the
difference between a signal index (0, 1, . . .) and a signal name (S0, S1, . . .)

The following table lists the syntax for the target commands that you can use
on the target PC. The MATLAB equivalent syntax is shown in the right
column. The target object name tg and the scope object name sc is used as an
example for the MATLAB methods.

parameter_name (P0, P1, . . .)
parameter_name = number

tg.parameter_name
tg.parameter_name = number

signal_name (S0, S1, . . .) tg.S#

Target PC MATLAB

addscope scope_index
addscope

tg.addscope(scope_index)
tg.addscope

remscope scope_index
remscope ’all’

tg.remscope(scope_index)
tg.remscope

startscope scope_index sc.start or +sc

stopscope scope_index sc.stop or -sc

addsignal scope_index =
signal_index1, signal_index2,
. . .

sc.addsignal(signal_index_vect
or)

remsignal scope_index =
signal_index1, signal_index2,
. . .

sc.remsignal(signal_index_vect
or)

Target PC MATLAB

2 Advanced Procedures

2-22

Scope Object Properties
When using the target PC command line interface, scope object properties are
limited to those shown in the following table. Notice the difference between a
scope index (0, 1, . . .) and the MATLAB variable name for the scope object on
the host PC. The scope index is indicated in the top left corner of a scope
window (SC0, SC1, . . .).

If a scope is running, you need to stop the scope before you can change a scope
property.

The following table lists the syntax for the target commands that you can use
on the target PC. The MATLAB equivalent syntax is shown in the right
column, and the scope object name sc is used as an example for the MATLAB
methods

viewmode scope_index or left click
the scope window

viewmode all or right click any
scope window

Press function key for scope, and
then press V to toggle viewmode

ylimit scope_index
ylimit scope_index = auto
ylimit scope_index = num1, num2

grid scope_index on
grid scope_index off

Target PC MATLAB

numsamples scope_index =
number

sc.NumSamples = number

decimation scope_index =
number

sc.Decimation = number

Target PC MATLAB

Target PC Command Line Interface

2-23

scopemode scope_index = 0 or
numerical, 1 or redraw, 2 or
sliding, 3 or rolling

sc.Mode = ’numerical’,
’redraw’, ’sliding’, ’rolling’

triggermode scope_index = 0,
freerun, 1 software, 2, signal,
3, scope

sc.TriggerMode = ’freerun’,
’software’, ’signal’, ’scope’

numprepostsamples scope_index
= number

sc.NumPrePostSamples = number

triggersignal scope_index =
signal_index

sc.TriggerSignal =
signal_index

triggerlever scope_index =
number

sc.TriggerLevel = number

triggerslope scope_index = 0,
either, 1, rising, 2, falling

sc.TriggerSlope = ’Either’,
’Rising’, ’Falling’

triggerscope scope_index2 =
scope_index1

sc.TriggerScope = scope_index1

Press function key for scope,
and then press S or move mouse
into the socpe window

sc.trigger

Target PC MATLAB

2 Advanced Procedures

2-24

Using Variables on the Target PC
Use variables to tag unfamiliar commands, parameter indices, and signal
indexes with more descriptive names.

After you have created and downloaded a target application to the target PC,
you can create target PC variables.

1 On the target PC, press C.

The target PC command window is activated, and a command line opens.

2 In the Cmd box, type a variable command. For example, if you have a
parameter that controls a motor, you could create the variables on and off
by typing

setvar on = p7= 1
setvar off = p7=0

3 Type a variable name. For example, to turn the motor on, type

on

The parameter P7 is changed to 1, and the motor turns on.

Variable Commands
The following table lists the syntax for the target commands that you can use
on the target PC. The MATLAB equivalent syntax is shown in the right
column.

Target PC MATLAB

setvar variable_name = target
command

getvar variable_name

delvar variable_name

delallvar

3

Network Communication

Web Interface 3-3
Connecting the Web Interface through TCP/IP 3-3
Connecting the Web Interface through RS232 3-4
Syntax for the xpctcp2ser Command 3-6
Using the Main Page 3-8
Changing WWW Properties 3-10
Viewing Signals with the Web Browser 3-11
Using Scopes with the Web Browser 3-12
Viewing and Changing Parameters with the Web Interface . 3-13
Changing Access Levels to the Web Browser 3-14

User Datagram Protocol (UDP) 3-15
What Is UDP? . 3-15
Why UDP? . 3-17
UDP Communication Setup 3-17
UDP Receive Block 3-19
UDP Send Block 3-20
UDP Pack Block 3-20
UDP Unpack Block 3-22
UDP Byte Reversal Block. 3-23
UDP Example . 3-23

3 Network Communication

3-2

xPC Target provides support for TCP/IP and UDP/IP communication protocols.

This chapter includes the following sections:

• “Web Interface” — Connect a target application to any computer connected
to the network.

• User Datagram Protocol (UDP) — Send and receive messages from a target
application using UDP packets.

Web Interface

3-3

Web Interface
xPC Target has a Web server build in the TCP/IP mode to the kernel that
allows you to interact your target application using a Web browser. If the
target PC is connected to a network, you can use a Web browser to interact with
the target application from any computer connected to a network

Currently this feature is limited to Microsoft Internet Explorer (version 4.0 or
later) and Netscape Navigator (version 4.5 or later) are the supported
browsers.

This section includes the following sections:

• Connecting the Web Interface through TCP/IP

• Connecting the Web Interface through RS232
• Using the Main Page
• Changing WWW Properties
• Viewing Signals with the Web Browser
• Using Scopes with the Web Browser
• Viewing and Changing Parameters with the Web Interface
• Changing Access Levels to the Web Browser

Connecting the Web Interface through TCP/IP
If your host PC and target PC are connected with a network cable, you can
connect the target application on the target PC to a Web browser on the host
PC.

The TCP/IP stack on the xPC Target kernel supports only one simultaneous
connection, since its main objective is real-time applications. This connection
is shared between MATLAB and the Web browser. This also means that only
one browser or MATLAB is able to connect at one time.

Before you connect your Web browser on the host PC, you must load a target
application onto the target PC. The target application does not have to be
running, but it must be loaded. Also, your browser must have JavaScript and
StyleSheets turned on.

1 In the MATLAB window, type

3 Network Communication

3-4

xpcwwwenable

MATLAB is disconnected from the target PC, and the connection is reset for
connecting to another client. If you do not use this command, your Web
browser may not be able to connect to the target PC.

2 Open a Web browser. In the address box, enter the IP address and port
number you entered in the xPC Target Setup window. For example, if the
target computer IP address is 192.168.0.1 and the port is 22222, type

http://192.168.0.1:22222/

The browser loads the xPC Target Web interface frame and pages.

Connecting the Web Interface through RS232
If the host PC and target PC are connected with a serial cable, instead of a
network cable, you can still connect the target application on the target PC to
a Web browser on the host PC. xPC Target includes a TCP/IP to RS232
mapping application. This application writes whatever it receives from the
RS232 connection to a TCP/IP port and vice versa.

Before you connect your Web browser on the host PC, you must load a target
application onto the target PC. The target application does not have to be
running, but it must be loaded. Also, your Web browser must have JavaScript
and StyleSheets turned on.

1 In the MATLAB window, type

xpcwwwenable or close(xpc)

MATLAB is disconnected from the target PC leaving the target PC ready to
connect to another client. The TCP/IP stack on the xPC Target kernel
supports only one simultaneous connection. If you do not use this command,
the TCP/IP to RS232 gateway may not be able to connect to the target PC.

2 Open a DOS command window, and enter the command to start the TCP/IP
to RS232 gateway. For example, if the target PC is connected to COM1 and
you would like to use the TCP/IP port 222222, type the following

Web Interface

3-5

c:\MATLABR12\toolbox\rtw\targets\xpc\xpc\bin\xpctcp2ser -v -t
22222 -c 1

The TCP/IP to RS232 gateway starts running, and the DOS command
window displays the message

--
* xPC Target TCP/IP to RS232 gateway *
* Copyright 2001 The MathWorks *
--
Connecting COM to TCP port 22222
Waiting to connect

If you did not close the MATLAB to target application connection, then DOS
displays the message, Could not initialize COM port.

3 Open a Web browser. In the address box, enter

http://localhost:22222/

The Web browser loads the xPC Target Web interface pages.

4 Using the Web interface, start and stop the target application, add scopes
add signals, and change parameters.

5 In the DOS command window, press Ctrl+C

The TCP/IP to RS232 Gateway stops running, and the DOS command
window displays the message

Interrupt received, shutting down

The gateway application has a handler that responds to Ctrl-C by
disconnecting and shutting down cleanly. In this case, Ctrl-C is not used to
abort the application.

6 In the MATLAB command window, type

3 Network Communication

3-6

xpc

MATLAB reconnects to the target application and lists the properties of the
target object.

If you did not close the gateway application, then MATLAB displays the
message

Error in ==>
C:\MATLABR12\toolbox\rtw\targets\xpc\xpc\@xpc\xpc.m
On line 31 ==> sync(xpcObj);

To correct this problem, you must close MATLAB and then restart it.

Syntax for the xpctcp2ser Command
The syntax for the xpctcp2ser command is

xpctcp2ser [-v] [-n] [-t tcpPort] [-c comPort]

The options are described in the following table.

Command
line option

Description

-v Produces a line of output every time a client connects or
disconnects.

-n Allows non-local connections. By default, only clients from
the same computer that the gateway is running on are
allowed to connect. This option allows anybody to connect to
the gateway.

If you don’t use this option, only the host PC which is
connected to the target PC with a serial cable will be able to
connect to the selected port. For example, if you start the
gateway on your host PC, with the default ports, you can
type in the web browser http://localhost:22222/ . However, if
you try to connect to http://DomainName.com:22222/ , you
will probably get a connection error.

Web Interface

3-7

-t tcpPort Uses TCP port tcpPort. Default t is 22222. For example, to
connect to port 20010, type -t 20010.

-h Prints a help message.

-c comPort Uses COM port comPort (1 <= comPort <= 4), Default is 1.
For example, to use COM2, type -c 2

Command
line option

Description

3 Network Communication

3-8

7 In the MATLAB window, type

!c:\MATLABR12\toolbox\rtw\targets\xpc\xpc\bin\xpctcp2ser -h

Alternatively, you can open a DOS command window and enter

c:\MATLABR12\toolbox\rtw\targets\xpc\xpc\bin\xpctcp2ser -h

MATLAB displays the following

Usage:
xpctcp2ser [-v] [-n] [-t tcpPort] [-c comPort]
xpctcp2ser -h

The command line options are as follows:
 -v : Verbose output.
 -c comPort : Use Com Port comPort (1 <= comPort <= 4),

defaults to 1
 -t tcpPort : Use TCP port # tcpPort, defaults to 22222
 -h : Print a help message.
 -n : Allow Non-local connections. By default,

only clients from the same computer that the
gateway is running on are allowed to connect.
This option allows anybody to connect to the
gateway.

Using the Main Page
The Main page is divided into four parts, one below the other. The four parts
are: System Status, xPC Target Properties, Navigation, and WWW Properties.

After you connect a Web browser to the target PC you can use the Main page
to control the target application.

1 In the left frame, click the Refresh button.

System status information in the top cell is uploaded from the target PC. If
the right frame is either the Signals List page or the Screen Shot page,
updating the left frame also updates the right frame.

Web Interface

3-9

2 Click the Start Execution button.

The target application begins running on the target PC, the Status line is
changed from Stopped to Running, and the Start Execution button text
changes to Stop Execution.

3 Update the execution time and average task execution time (TET). Click the
Refresh button. To stop the target application, click the Stop Execution
button.

4 Enter new values in the Stop Time and Sample Time boxes, and then click
the Apply button. You can enter -1 or Inf in the Stop Time box for an
infinite stop time.

3 Network Communication

3-10

The new property values are downloaded to the target application. Notice,
the sample time box is visible only when the target application is stopped.
You cannot change the sample time while a target application is running.

5 Select scopes to view on the target PC. From the ViewMode list choose one
or all of the scopes to view.

Note the ViewMode button is visible only if you add two or more scopes to
the target PC.

Changing WWW Properties
The WWW Properties cell in the left frame contains fields that affect the
display on the Web interface itself, and not the application. There are two
fields: maximum signal width to display, and refresh interval.

1 In the Maximum Signal Width enter -1, Inf (all signals), 1 (show only
scalar signals), 2 (show scalar and vector signals less than or equal to 2
wide), or n (show signals with a width less than n)

Signals with a width greater than the value you enter, are not displayed on
the Signals page.

Web Interface

3-11

2 In the Refresh Interval box, enter a value greater than 10. For example,
enter 20.

The signal page updates automatically every 20 seconds. Entering -1 or Inf
does not automatically refresh the page.

Sometimes, both of the frames try to update simultaneously, or the auto
refresh starts before the previous load has finished. This problem may happen
with slow network connections. In this case, increase the refresh interval or
manually refresh the browser (Set the Refresh Interval = Inf).

This may also happen when you are trying to update a parameter or property
at the same time as the page is automatically refreshing.

Sometimes, when a race condition occurs, the browser becomes confused about
the format, and you may have to refresh it. This should not happen too often.

Viewing Signals with the Web Browser
The Signal page is a list of the signals in your model.

After you connect a Web browser to the target PC you can use the Signals page
to view signal data.

1 In the left frame, click the Signals button.

The Signals page is loaded in the right frame with a list of signals and the
current values.

2 On the Signals page in the right frame, click the Refresh button.

The Signals page is updated with the current values. Vector/matrix signals
are expanded and indexed in the same column-major format that MATLAB
uses. This may be affected by the Maximum Signal Width value you enter in
the left frame.

3 In the left frame, click the Screen Shot button.

The Screen Shot page is loaded and a copy of the current target PC screen is
displayed. The screen shot uses the Portable Network Graphics file format
PNG.

3 Network Communication

3-12

Using Scopes with the Web Browser
The Web browser interface allows you to visualize data using an interactive
graphical interface.

After you connect a Web browser to the target PC you can use the Scopes page
to add, remove and control scopes on the target PC.

1 In the left frame, click the Scopes button.

The Scopes List page is loaded into the right frame.

2 Click the Add Scope button.

A scope of type target is created and displayed on the target PC. The scopes
page displays a list of all the scopes present. The capability exists to add a
new scope, remove existing scopes, and control all aspects of a scope from
this page.

Note If any host scopes exist, they will be visible and controllable from this
page. They may even be removed. However, there is no capability to add any
scopes of type host from the Scope page.

3 Click the Edit button.

The scope editing page opens. From this page, you can edit the properties of
any scope, and control the scope.

4 Click the Add Signals button.

The browser displays an Add New Signals list.

5 Select the check boxes next to the signal names, and then click the Apply
button.

A Remove Existing Signals list is added above the Add New Signals list.

You do not have to stop a scope to make changes. If stopping the scope is
necessary, the Web interface stops it automatically and then restarts it if
necessary when the changes are made. It will not restart the scope if the state
was originally stopped.

Web Interface

3-13

Viewing and Changing Parameters with the Web
Interface
The parameters page displays a list of all the tunable parameters in your
model. Row and column indices for vector/matrix parameters are also shown.

After you connect a Web browser to the target PC you can use the Parameters
page to change parameters in your target application while it is running in real
time.

1 In the left frame, click the Parameters button.

The Parameter List page is loaded into the right frame.

If the parameter is a scalar parameter, the present parameter value is
shown in a box that you can edit.

If the parameter is a vector/matrix, there is a button which takes you to
another page which displays the vector/matrix (in the correct shape) and
enables you to edit the parameter

2 Enter a new parameter value into one or more of the parameter boxes, and
then click the Apply button.

The new parameter values are uploaded to the target application.

3 Network Communication

3-14

Changing Access Levels to the Web Browser
The Web browser interface allows you to set access levels to the target
application. The different levels limit access to the target application. The
highest level, 0, is the default level and allows full access. The lowest level 4,
only allows signal monitoring and tracing with your target application.

1 In the Simulink window, click Simulation Parameters. On the Simulation
Parameter dialog box, click the Real-Time Workshop tab.

Access levels are set in the System target file box. For example, to set the
access level to 1, enter

xpctarget.tlc -axpcWWWAccessLevel=1

The effect of not specifying -axpcWWWAccessLevel=# is that the access level
of 0 (the highest) is set.

2 Click OK.

The various fields disappear depending on the access level. For example, if your
access level does not allow you access to the parameters, you will not see the
button for parameters.

There are various access levels for monitoring, which will allow different levels
of hiding. The proposed setup is described below. Each level builds up on the
previous one, so only the incremental hiding of each successive level is
described

Level 0 — Full access to all pages and functions.

Level 1 — Cannot change the sample and stop times. Cannot change
parameters, but can view parameters.

Level 2 — Cannot start and stop execution of the target application.

Level 3 — Cannot view parameters. Cannot add new scopes, but can edit
existing scopes.

Level 4 — Cannot edit existing scopes on the Scopes page. Cannot add or
remove signals on the Scopes page. Cannot view the Signals page and the
Parameters page.

User Datagram Protocol (UDP)

3-15

User Datagram Protocol (UDP)
xPC Target supports communication with another system using User
Datagram Protocol (UDP) packets. UDP is a transport protocol similar to TCP.
However, unlike TCP, UDP provides a direct method to send and receive
packets over an IP network. UDP uses this direct method at the expense of
reliability by limiting error checking and recovery.

This section includes the following topics:

• What Is UDP?

• Why UDP?

• UDP Communication Setup

• UDP Receive Block

• UDP Send Block

• UDP Pack Block

• UDP Unpack Block

• UDP Example

What Is UDP?
The User Datagram Protocol (UDP) is a transport protocol layered on top of the
Internet Protocol (IP) and is commonly known as UDP/IP. It is analogous to
TCP/IP. A convenient way to present the details of UDP/IP is by comparison to
TCP/IP as presented below:

• Connection Versus Connectionless — TCP is a connection based protocol,
while UDP is a connectionless protocol. In TCP, the two ends of the
communication link must be connected at all times during the
communication. An application using UDP prepares a packet and sends it to
the receiver’s address without first checking to see if the receiver is ready to
receive a packet. If the receiving end is not ready to receive a packet, the
packet is lost

• Stream Versus Packet — TCP is a stream-oriented protocol, while UDP is a
packet-oriented protocol. This means that TCP is considered to be a long
stream of data that is transmitted from one end to the other with another
long stream of data flowing in the other direction. The TCP/IP stack is
responsible for breaking the stream of data into packets and sending those

3 Network Communication

3-16

packets while the stack at the other end is responsible for reassembling the
packets into a data stream using information in the packet headers. UDP, on
the other hand, is a packet-oriented protocol where the application itself
divides the data into packets and sends them to the other end. The other end
does not have to reassemble the data into a stream. Note, some applications
may indeed present the data as a stream when the underlying protocol is
UDP. However, this is the layering of an additional protocol on top of UDP,
and it is not something inherent in the UDP protocol itself.

• TCP Is a Reliable Protocol, While UDP Is Unreliable — The packets that
are sent by TCP contain a unique sequence number. The starting sequence
number is communicated to the other side at the beginning of
communication. Also, the receiver acknowledges each packet, and the
acknowledgement contains the sequence number so that the sender knows
which packet was acknowledged. This implies that any packets lost on the
way can be retransmitted (the sender would know that they did not reach
their destination since it had not received an acknowledgement). Also,
packets that arrive out of sequence can be reassembled in the proper order
by the receiver.

Further, timeouts can be established, since the sender will know (from the
first few packets) how long it takes on average for a packet to be sent and its
acknowledgment received. UDP, on the other hand, simply sends the packet
and does not keep track of them. Thus, if packets arrive out of sequence, or
are lost in transmission, the receiving end (or the sending end) has no way of
knowing.

TCP communication may be compared to a telephone conversation where a
connection is required at all times and two-way streaming data (the words
spoken by each party to the conversation) are exchanged. UDP, on the other
hand, may be compared to sending letters by mail (without a return address).
If the other party is not found, or the letter is lost in transit, it is simply
discarded. The analogy fails, however, when considering the speed of
communication. Both TCP and UDP communication happen roughly at the
same speed since both use the underlying Internet Protocol (IP) layer.

User Datagram Protocol (UDP)

3-17

Note Unreliable is used in the sense of “not guaranteed to succeed” as
opposed to “will fail a lot of the time.” In practice, UDP is quite reliable as long
as the receiving socket is active, and is processing data as quickly as it arrives.

Why UDP?
UDP was chosen as the transport layer for xPC Target precisely because of its
lightweight nature. Since the primary objective of an application running in
the xPC Target framework is real-time, the lightweight nature of UDP ensures
that the real-time application will have a maximum chance of succeeding in
real-time execution. Also, the datagram nature of UDP is ideal for sending
samples of data from the Simulink/RTW generated application. Since TCP is
stream oriented, separators between sets of data will have to be used for the
data to be processed in samples. It is easier to build an application to deal with
unreliable data than it is to decode all of this information in real-time. Also, if
the application is unable to process the data as quickly as it arrives, the
following packets can just be ignored and only the most recent packet can be
used.

Communication can involve a packet made up of any Simulink data type
(double, int8, int32, uint8, etc.), or a combination of these. xPC Target
provides blocks for combining various signals into one packet (packing), and
then transmitting it. Also, xPC Target provides blocks for splitting a packet
(unpacking) into its component signals which can then be used in a Simulink
model. The maximum size of a packet is limited to about 500 bytes.

UDP Communication Setup
The infrastructure provided in the xPC Target Library for UDP communication
consists mainly of two blocks — a Send block and a Receive block. These blocks
may be found in the xPC Target Library available from the Simulink Library
under xPC Target, or you can access then form the MATLAB command line,
by typing

xpclib

The blocks are located under the UDP heading in the library. The Send block
takes as input a vector of type uint8, which it sends. This is limited to a length
of about 500 bytes (i.e., a 1x500 vector). Similarly, the Receive block outputs a

3 Network Communication

3-18

vector of uint8. To convert arbitrary Simulink data types into this vector of
uint8, a Pack block is provided, while an Unpack block is provided to convert
a vector of uint8s back into arbitrary Simulink data types. The UDP part of the
xPC Target Block Library is shown below.

xPC Target includes a Byte Reversal block for communication with bit-endian
architecture systems. You do not need this block if you are communicating
between PC systems running either xPC Target or Microsoft Windows.

All the blocks are set up to work both from within Simulink and from an
application running under xPC Target. However, when using a Simulink
simulation and an xPC Target application to communicate, or when using two
Simulink models, care must be taken. This is because a Simulink model
inherently executes in non-real time and may be several times faster or slower
than real time. The sample time of the send and receive blocks and the sample
time of the Simulink model must be set so that the communication can proceed
properly.

User Datagram Protocol (UDP)

3-19

UDP Receive Block
The Receive block has two output ports. The first port is the actual output of
the received data as a vector of uint8 while the second one is a flag indicating
whether any new data has been received. This port outputs a value of 1 for the
sample when there is new data and a 0, otherwise. The default behavior of the
Receive block is to keep the previous output when there is no new data. This
behavior can be modified by the user by using the second port to flag when
there is new data.

The Block Parameters for the Review block are shown below.

The IP address to receive from can be left with the default value of 0.0.0.0.
This will accept all UDP packets from any other computer. Otherwise, if set to
a specific IP address, only packets arriving from that IP address will be
received. The IP port to receive from is the port which the block will accept
data from. The other end of the communication will have to send data to the
port specified here. The output port width is the width of the acceptable
packets. This may be obtained when designing the other side (send side) of the
communication. The sample time may be set to -1 for inheritable sample time,
but it is recommended that this be set to some specific (large) value to eliminate

3 Network Communication

3-20

chances of dropped packets. This is especially true when you are using a small
sample time.

UDP Send Block
The Send block has only one input port that receives the uint8 vector that is
sent as a UDP packet.

The Block Parameters for the Send block are shown below.

The IP address to send to and the IP port to send to have to be specified in
the appropriate locations. The local IP port that is used for sending will be
determined automatically by the networking stack. The sample time should be
set to an appropriate value, with similar considerations as in the receive block.

UDP Pack Block
The Pack Block is used to convert one or more Simulink signals of varying data
types to a single vector of uint8 as required by the Send Block. The data types
for the different signals must be specified as part of the block parameters while
the sizes of each signal are determined automatically.

User Datagram Protocol (UDP)

3-21

As seen in the figure above, the data types of each of the signals have to be
specified as a cell array of strings in the correct order. Once this is done, the
block will automatically convert itself to one with the correct number of input
ports. There is always one output port. The supported data types are: double,
single, int8, uint8, int16, uint16, int32, uint32, and boolean. The byte
alignment field specifies how the data types are aligned. The possible values
are: 1, 2, 4 and 8. The byte alignment scheme is simple, and ensures that each
element in the list of signals starts on a boundary specified by the alignment
relative to the start of the vector. For example, say the Input port data types
are specified as

{’uint8’,’uint32’,’single’,’int16’,’double’}

and an alignment of 4 is used. Assume also that all the signals are scalars. The
first signal will then start at byte 0 (this is always true), the second at byte 4,
the third at byte 8, the fourth at byte 12, and the fifth at byte 16. Note that the
sizes of the data types used in this example are 1, 4, 4, 2, and 8 bytes
respectively. This implies that there are “holes” of 3 bytes between the first and
second signal and 2 bytes between the fourth and fifth signal.

A byte alignment of 1 means the tightest possible packing. That is, there are
no holes for any combination of signals and data types.

3 Network Communication

3-22

Note Individual elements of vector/matrix signals are not byte aligned: only
the entire vector/matrix is byte aligned. The individual elements are tightly
packed with respect to the first element.

UDP Unpack Block
This block is the exact analog of the Pack block. It receives a vector of uint8
and outputs various Simulink data types in different sizes.

As shown in the figure above, the Output port datatypes field is the same as
in the Input port data types field of the matching Pack block. The Pack block
is on the sending side and the Unpack block is on the receiving side in different
models. The Output port dimensions field contains a cell array, with each
element the dimension as returned by the size function in MATLAB of the
corresponding signal. This should normally be the same as the dimensions of
the signals feeding into the corresponding Pack block.

Note on Byte Alignment
The byte alignment feature provided in the Pack and Unpack blocks is
primarily intended for interfacing a system running xPC Target to another
system that is running neither Simulink nor xPC Target. For example, the

User Datagram Protocol (UDP)

3-23

data on the other end may be in the form of a C struct, which is subject to the
byte alignment convention of the compiler used. We recommend using a byte
alignment value of 1 (tightly packed) whenever possible. This, of course, is
easily accomplished when UDP I/O is used to exchange data between two xPC
Target systems or between xPC Target and Simulink.

Even when communication is between xPC Target and a system using a C
struct, the use of compiler pragmas may help to pack the structure tightly. For
example, #pragma pack(1) is common to several compilers. The byte
alignment blocks are provided for the case when this is not possible. We provide
an example later for the case of a C structure, where several pack and unpack
blocks are used to force the proper alignment of data.

UDP Byte Reversal Block.
You use the Byte Reversal block for communication between an xPC Target
system and a system running with a processor that is big-endian. Processors
compatible with the Intel 80x86 family are always little-endian. For this
situation, you should insert a Byte Reversal block before the Pack block and
just after the Unpack block to ensure that the values are transmitted properly.

This block takes just one parameter, the number of inputs. The number of
input ports adjusts automatically to follow this parameter, and the number of
outputs is equal to the number of inputs.

UDP Example
In this section, we provide an example of how to set up two way data exchange
between two xPC Target systems, between xPC Target and Simulink, or

3 Network Communication

3-24

between two Simulink models. When one or both of the systems is running
Simulink in non real-time, care must be taken to set the sample time properly.

Our hypothetical models are called Model A and Model B. Two different sets of
data are transferred between these two models. One set from Model A to
Model B and another set in the opposite direction.

The data to transfer is in the following order:

Model A to Model B

• uint8 (3x3)

• int16 (1x1)

• double (2x4)

Model B to Model A

• single (4x1)

• double (2x2)

• uint32 (2x2)

• int8 (5x3)

For the purposes of this example, all the models are generated using Simulink
Constant blocks that use the MATLAB random number function (rand). The
random numbers are generated by Real Time Workshop using this function at
the time of code generation. To generate the vector of uint8 (3x3), use the
MATLAB function.

uint8(255 * rand(3,3))

since 255 is the maximum value for an unsigned 8-bit integer. The other values
are generated similarly.

With this setup, construct the send side of modelA.

User Datagram Protocol (UDP)

3-25

Note that Port Data Types and Signal dimensions have been turned on from
the Format menu, showing us that the width of the UDP packet to be sent is
75 bytes. The parameters used in the Pack block are Input port datatypes
{’uint8’,’int16’,’double’} and Byte Alignment 1.

For the Send block, set the IP Address to send to to 192.168.0.2. This is the
hypothetical address of the system that will run Model B. Set the IP Port to
send to to 25000 (picked arbitrarily). The sample time is set to 0.01.

Use this information to construct the receive end of Model B.

3 Network Communication

3-26

For setting up the Receive block, IP address to receive from is set to
192.168.0.1 (the hypothetical address of the system that will run Model B).
The IP port to receive from is set to 25000 (the same value as set in the Send
block in Model A). The Output port width is set to 75 which is obtained from
the output port width of the Pack block in Model A.

For the Unpack block, Byte Alignment is set to 1, and the Output port
datatypes is set to {’uint8’,’int16’,’double’} from the Pack block in
Model A. The Output port dimensions is set to {[3 3],1,[2 4]} from the
dimensions of the inputs to the Pack block in modelA.

Note that in Model B, the second output port of the Receive block is sent into a
terminator. This may be used to determine when a packet has arrived. The
same is true for the outputs of the Unpack block, which in a real model would
be used in the model.

User Datagram Protocol (UDP)

3-27

For constructing the Model B to Model A side of the communication, follow an
analogous procedure. The final models are shown below.

3 Network Communication

3-28

The following table lists the parameters in Model A.

Block Parameter Value

Receive IP address 192.168.0.2

IP port 25000

Output port width 80

Sampletime 0.01

Unpack Output port dimensions {4,[2 2],[2 2],[5 3]}

User Datagram Protocol (UDP)

3-29

The following table lists the parameters in Model B

Note on UDP Communication
The UDP blocks work in the background while the real-time application is not
running. Also, the UDP communication has been set up to have a maximum of
two UDP packets waiting to be read. All subsequent packets are rejected. This
has been done to prevent excessive memory usage, and to minimize the load on
the TCP/IP stack. Consequently, when any large background task is being
performed, such as uploading a screen shot or communicating large pages
through the WWW interface, packet loss may occur. Applications should be
designed such that this is not critical. That is, the receipt of further packets
after the ones that were lost will ensure graceful continuation.

Output port datatypes {’single’,’double’,
’uint32’,’int8’}

Byte Alingment 2

Block Parameter Value

Pack Input Port Datatypes {’single’,’double’,
’uint32’,’int8’}

Byte Alingment 2

Send IP address 192.168.0.1

IP port 25000

Sampletime 0.01

Block Parameter Value

3 Network Communication

3-30

4

Embedded Option

Introduction 4-3
DOSLoader Mode Overview 4-4
StandAlone Mode Overview 4-4
Architecture . 4-5
Restrictions . 4-6

Updating the xPC Target Environment 4-8

Creating a DOS System Disk 4-11

DOS Loader Target Applications 4-12
Creating a Target Boot Disk for DOS Loader 4-12
Creating a Target Application for DOS Loader 4-13

Stand-Alone Target Applications 4-14
Creating a Target Application for Stand-Alone 4-14
Creating a Target Boot Disk for Stand-Alone 4-15
Using Target Scope Blocks with Stand-Alone 4-15

4 Embedded Option

4-2

The xPC Target Embedde Option allows you to boot the target PC from an
alternate device other than a floppy disk drive such as a hard disk drive or flash
memory. It also allows you to create stand-alone applications on the target PC
independent from the host PC.

This chapter includes the following sections:

• “Introduction”
• “Architecture”
• “Restrictions”
• “Updating the xPC Target Environment”
• “Creating a DOS System Disk”
• “DOS Loader Target Applications”
• “Stand-Alone Target Applications”

Introduction

4-3

Introduction
The xPC Target Embedded Option allows you to boot the xPC Target kernel
from not only a floppy disk drive, but also from other devices, including a flash
disk or a hard disk drive. By using xPC Target Embedded Option, you can
configure target PCs to automatically start execution of your embedded
application for continuous operation each time the system is booted. You use
this capability to deploy your own real-time applications on target PC
hardware.

The xPC Target Embedded Option extends the xPC Target base product by
adding two additional modes of operation:

• DOSLoader — This mode of operation is used to start the kernel on the
target PC from not only a floppy disk, but optionally start it from a flash disk
or a hard disk. The target PC then waits for the host computer to download
a real-time application either using the RS232 serial connection or using
TCP/IP network communication. Control and setting of starting, stopping,
parameters, tracing, and other properties can be achieved from either the
host PC of from the target PC.

• StandAlone — This mode extends the DOSLoader mode. After starting the
kernel on the target PC, StandAlone mode automatically starts execution of
your target application for complete stand-alone operation. This eliminates
the need for using a host computer and allows you to deploy real-time
applications on PC hardware environments.

Whether you are using the xPC Target Embedded Option with the DOSLoader
mode or the StandAlone mode, you initially boot your target PC with DOS
from virtually any boot device. Then the kernel is invoked from DOS.

Note The xPC Target Embedded Option requires a boot device with DOS
installed. DOS software and license are not included with xPC Target or with
the xPC Target Embedded Option.

During setup of either the DOSLoader mode or StandAlone mode, the xPC
Target Setup window allows you to create files for installation on the target
boot device. One of these files is an autoexec.bat file. When DOS starts, it

4 Embedded Option

4-4

invokes the autoexec.bat file which in turn starts the xPC Target kernel on
the target PC.

If you do not provide an target application and an autoexec.bat file to invoke
your target application, xPC Target Embedded Option starts the kernel on
your target PC and is ready to receive your target application whenever you
build and download a new one from the host computer.

In comparison, when using xPC Target without the xPC Target Embedded
Option, you can only download real-time applications to the target PC after
booting from an xPC Target boot disk. Because of this, when using xPC Target
without Embedded Option is not available, you are always required to use a
target PC equipped with a floppy disk drive. However, there are several cases
where your target system may not have a floppy disk drive or where the drive
is removed after setting up the target system. These cases can be overcome by
using the DOSLoader mode.

DOSLoader Mode Overview
With the DOSLoader mode of operation, you first set up a boot device such as
a floppy disk drive, flash disk, or a hard disk drive. This boot device must
include DOS and modules from xPC Target Embedded Option. Once the kernel
starts running, it awaits commands from the host computer and a target
application that is downloaded from the host computer. The primary purpose
of the DOSLoader mode is to allow you to boot from devices other than the
floppy drive.

StandAlone Mode Overview
With the StandAlone mode of operation, you create completely stand-alone
applications which start execution automatically when the target PC is booted.
There is no need for communication with a host computer to downloaded the
application after booting. Once the boot device has been set up with DOS,
modules from xPC Target Embedded Option, and your target application, you
boot the target PC. Upon booting, DOS invokes your autoexec.bat file which
invokes the kernel. However, in StandAlone mode, your target application is
combined with kernel in one binary *.rtb file. The final result is that your
target application starts automatically each time the target PC is booted. By
using xPC Target Embedded Option, you can deploy control systems, DSP
applications, and other systems on PC hardware for use in production

Introduction

4-5

applications using PC hardware. Typically these production applications are
found in systems where production quantities are low to moderate.

xPC Target Embedded Option also gives you the choice of using target scopes
on the target PC. When using StandAlone mode, target scopes allows you to
trace signals using the target PC monitor without any interaction from the host
computer. Assuming you do not want to view signals on the target PC, it is not
necessary to use target scopes or a monitor on your target PC. In such a case,
your system is able to operate as a black-box without a monitor, keyboard, or
mouse. Stand-alone applications are automatically set to continue running for
an infinite time duration or until the target computer is turned off.

Architecture
xPC Target Embedded Option creates additional files that you add to your
target PC DOS boot device. With the DOSLoader mode, an autoexec.bat file
is generated. This file enables DOS to automatically execute the file
xpcboot.com when the target PC is booted. The file autoexec.bat includes an
argument that invokes a *.rtb file containing the xPC Target kernel.
Therefore, when the boot device invokes DOS, the autoexec.bat file then
starts the xPC Target kernel. All of these files are placed on a floppy disk when
you click BootDisk from the xpcsetup GUI. Your real-time application is not
copied to the boot device. You create the real-time application later by clicking
Build.

The StandAlone mode operates in a similar fashion with a few important
differences. From the xpcsetup GUI, after choosing StandAlone, you only
click Update to make your current selections active. When you later click
Build, an autoexec.bat file and the xpcboot.com file are placed in a
subdirectory that is created within your present working directory. This
directory is named: modename_xpc_emb. In addition, the build process creates
your target application and combines it with the xPC Target kernel. This
combined *.rtb file is also placed in the same modename_xpc_emb
subdirectory. You copy these files onto any DOS boot device. Then, upon
booting DOS, the xpcboot.com file is invoked with the kernel and with your
target application. If you choose to use target scopes with your stand-alone
application, you can do so provided appropriate xPC Target Scope blocks are
added and configured prior to code generation.

A small DOS executable called xpcboot.com is the core module of the
Embedded Option. This module is used in both the DOSLoader mode and the

4 Embedded Option

4-6

StandAlone mode. The module xpcboot.com is executed from DOS. It loads
and executes any xPC Target application. The first argument given to
xpcboot.com is the name of the image file (*.rtb) to be executed. This image
file contains the xPC Target kernel and options, such as whether you are
communicating using a serial cable or TCP/IP, and the ethernet address you
have assigned to the target PC.

Since the xPC Target loader is just an ordinary xPC Target application, the
loader can be executed from xpcboot.com.

Before starting the kernel, you must first boot the target PC under DOS. The
module xpcboot.com is then automatically executed under DOS by
autoexec.bat. To boot the target PC under DOS, you must first install DOS on
the target PC boot device. The xPC Target Embedded Option does not have
specific requirements as to the type of device you use to boot DOS. It is possible
to boot from a floppy disk drive, hard disk drive, flash disk, or other device
where you have installed DOS.

DOS is only needed to execute xpcboot.com and read the image file from the
file system. After switching to the loaded kernel, and then executing the xPC
Target application, DOS is discarded and is unavailable, unless you reboot the
target PC without automatically invoking the xPC Target kernel. Once the xPC
Target application begins execution, the target application is executed entirely
in the protected mode using the 32-bit flat memory model.

Restrictions
The following restrictions apply to the booted DOS environment when you use
xpcboot.com to execute the target applications:

• The CPU must be executed in real mode

• While loaded in memory, the DOS partition must not overlap the address
range of a target application

You can satisfy these restrictions by avoiding the use of additional memory
managers like emm386 or qemm. Also, you should avoid any utilities that attempt
to load in high memory space (for example, himem.sys). If the target PC DOS
environment does not use a config.sys file or memory manager entries in the
autoexec.bat file, there should not be any problems when running
xpcboot.com.

Introduction

4-7

It is also necessary that your TargetMouse setting is consistent with your
hardware. Some PC hardware may use an RS232 port for the mouse, while
others use a PS2 mouse. If a mouse is not required in your application, you may
choose to select None as your setting for the TargetMouse.

4 Embedded Option

4-8

Updating the xPC Target Environment
After the xPC Target Embedded Option software has been correctly installed,
the xPC Target environment, visible through xpcsetup or getxpcenv, contains
new property choices for DOSLoader or StandAlone, in addition to the default
BootDisk that is normally used with xPC Target.

It is assumed that the xPC Target environment is already set up and working
properly with the xPC Target Embedded Option disabled. If you have not
already done so, we recommend you confirm this now.

You can use the function getxpcenv to see the current selection for
TargetBoot, or you can view this through the xPC Target Setup window. Start
MATLAB and execute the function

xpcsetup

Within the frame of the xPC Target Embedded Option, you see the property
TargetBoot, as well as the currently selected value. The choices are:

• BootFloppy — Standard mode of operation when xPC Target Embedded
Option is not installed.

• DOSLoader — For invoking the kernel on the target PC from DOS.

• StandAlone — For invoking the kernel on the target PC from DOS and
automatically starting the target application without connecting to a host
computer. With this mode, the kernel and the target application are
combined as a single module that is placed on the boot device.

Updating the xPC Target Environment

4-9

The default setting for the property TargetBoot is BootFloppy. When using
BootFloppy, xPC Target must first create a target boot disk, which is then
used to boot the target PC.

4 Embedded Option

4-10

The property TargetBoot can be set to two other values, namely DOSLoader
or StandAlone. If the xPC Target loader is booted from any boot device with
DOS installed, the value DOSLoader must be set as shown above. If you want
to use a stand-alone application that automatically starts execution of your
target application immediately after booting, specify StandAlone.

After changing the property value, you need to update the xPC Target
environment by clicking the Update button in the xPC Target Setup window.
If your choice is DOSLoader, a new target boot disk must be created by clicking
BootDisk. Note that this overwrites the data on the inserted target boot disk
as new software modules are placed on the target boot disk. If your choice is
StandAlone, you click the Update button. Upon building your next real-time
application, all necessary xPC Target files are saved to a subdirectory below
your present working directory. This subdirectory is named with your model
name with the string “_xpc_emb” appended. For example, xpcosc_xpc_emb.

For more detailed information about how to use the xPC Target Setup, see
Chapter 5, “Environment Reference.”

Creating a DOS System Disk

4-11

Creating a DOS System Disk
When using DOSLoader mode, or StandAlone mode, you must first boot your
target PC with DOS. These modes may be used from any boot device including
flash disk, floppy disk drive, or a hard disk drive.

In order to boot DOS with a target boot disk, a minimal DOS system is required
on the boot disk. With Windows 95, Windows 98, or DOS, you can create a DOS
boot disk using the command

sys a:

Note xPC Target Embedded Option does not include a DOS license. You must
obtain a valid DOS license for your target PC.

It is helpful to also copy additional DOS-utilities to the boot disk including

• A DOS-editor to edit files

• The format program to format a hard disk or FlashRAM

• The fdisk program to create partitions

• The sys program to transfer a DOS system onto another drive, such as the
hard disk drive

A config.sys file is not necessary. The autoexec.bat file should be created to
automatically boot the loader or a standalone xPC Target application. This is
described in the following sections.

4 Embedded Option

4-12

DOS Loader Target Applications
This section includes the following topics:

• “Creating a Target Boot Disk for DOS Loader”
• “Creating a Target Application for DOS Loader”

Creating a Target Boot Disk for DOS Loader
As the first step, we assume you have created a DOS system disk and updated
the xPC Target environment by setting the property TargetBoot to
DOSLoader. From the xPC Target Setup window, click the BootDisk button
and xPC Target copies the necessary files to the DOS disk. The files that are
added to the DOS boot disk include:

• checksum.dat

• autoexec.bat

• xpcboot.com

• *.rtb (where * is defined in the table below)

With the DOSLoader mode, the correct *.rtb file is added to the DOS disk
according to the options specified in the following table.

Note The numeric value of n corresponds to the maximum model size. This
value is either 1, 4, or 16 megabytes. The default value for n is 1, or a
1-megabyte maximum model size.

Table 4-1: DOSLoader Mode *.rtb File Naming Convention

xPC Target
environment

HostTargetComm:
RS232

HostTargetComm:
TCP/IP

TargetScope: Disabled xpcston.rtb xpctton.rtb

TargetScope: Enabled xpcsgon.rtb xpctgon.rtb

DOS Loader Target Applications

4-13

The file autoexec.bat is copied to the DOS disk. This file should contain at
least the following line:

xpcboot xxx.rtb

where xxx.rtb is the file described in table 11-1. We recommend that you view
this autoexec.bat file to confirm this.

Now the target boot disk can be removed from the host and put into the target
PC disk drive. By rebooting the target PC, DOS is booted from the target boot
disk and the autoexec.bat file with the result in the xPC Target loader being
automatically executed. From this point onwards, the CPU runs in protected
mode and DOS is discarded.

You can repeat this procedure as necessary. There are no restrictions on the
number of xPC Target boot floppies that you can create. However, xPC Target
and the xPC Target Embedded Option do not include DOS licenses. It is
assumed that you will purchase valid DOS licenses for your target PCs from
the supplier of your choice.

If the xpcboot command is not placed in the autoexec.bat, xpcboot.com is not
executed when the target PC is booted. Instead, the target will be finished once
it has booted DOS. You can then use the DOS environment to create a DOS
partition on a hard disk, format it, and transfer xpcboot.com and xxx.rtb onto
it. The autoexec.bat file can then be placed on the hard disk and edited so that
it automatically boots the xPC Target loader the next time the target PC is
booted. After this step the floppy disk drive can be removed from the system.
The same procedure works with flash disks and other boot devices.

Creating a Target Application for DOS Loader
After having booted the target PC as described in the proceeding section, the
target PC is ready to receive xPC Target applications from the host computer.
Only now, these applications are received by the DOSLoader component of
xPC Target. In every aspect, the DOSLoader mode will allow your target PC
to operate just as it normally would when running the xPC Target after booting
from a standard xPC Target boot disk. When you click Build for your model,
the target application is downloaded to the target PC using the communication
protocol as you specified earlier in the xPC Target Setup window.

4 Embedded Option

4-14

Stand-Alone Target Applications
This section includes the following topics:

• “Creating a Target Application for Stand-Alone”
• “Creating a Target Boot Disk for Stand-Alone”
• “Using Target Scope Blocks with Stand-Alone”

Creating a Target Application for Stand-Alone
After selecting StandAlone as your TargetBoot entry, the xPC Target
environment is ready to create completely stand-alone applications using the
Real-Time Workshop Build button.

Once the build process has finished, a message is displayed confirming that a
stand-alone application has been created. With the StandAlone mode, the
download procedure is not automated. The files necessary for creating
stand-alone operation are placed in a subdirectory below your working
directory. You copy these files to your DOS boot device.

After the build process is complete, files in your subdirectory include:

• model.rtb. This image contains the xPC Target kernel and your target
application.

• autoexec.bat. This file is automatically invoked by DOS. It then runs
xpcboot.com and the *.rtb file.

• xpcboot.com. This file is a static file that is part of xPC Target Embedded
Option.

Note We suggest setting the property HostTargetComm to RS232 if
property TargetBoot is set to StandAlone. This will use less memory than
the TCP/IP setting. With either setting, StandAlone mode does not have any
interaction with the host PC.

Stand-Alone Target Applications

4-15

Creating a Target Boot Disk for Stand-Alone
After making a bootable DOS boot disk, the file autoexec.bat file must contain
at least the following line

xpcboot model.rtb

where model is the name of your Simulink model.

These files should be copied to your DOS boot disk and inserted into the target
drive. By rebooting the target PC, DOS is booted from the boot disk. The
autoexec.bat file invokes the command string shown above which starts the
kernel and the real-time application. Because of the stand-alone nature of the
executed rtb file, the simulation of the xPC Target application starts
immediately. Interaction between the host PC and target PC is no longer
possible.

Is also possible to transfer the DOS system and stand-alone xPC Target
applications to a hard disk or a flash RAM board. This offers great flexibility in
creating self-starting stand-alone applications.

Using Target Scope Blocks with Stand-Alone
When using xPC Target Embedded Option with StandAlone mode, you can
also use target scopes for tracing signals and displaying them on the target
screen.

Because host-to-target communication is not supported with the StandAlone
mode, scope objects of type target must be defined within the Simulink model
before the xPC Target application is built.

4 Embedded Option

4-16

xPC Target (basic package) offers a block for such purposes.

Copy the Scope (xPC) block into your block diagram and connect the signals
you would like to view to this block. Multiple signals can be used provided a
Mux block is used to bundle them.

Stand-Alone Target Applications

4-17

It is necessary to edit the Scope (xPC) dialog box and confirm that the check
box entry for Start Scope after download is checked as shown in the
following dialog box.

This setting is required to enable target scopes to begin operating as soon as
the application starts running. The reason this setting is required is that the
host PC is not available in StandAlone mode to issue a command that would
start scopes. With these settings, click Build and copy the files from your
modelname_xpc_emb subdirectory to your boot disk. Then boot your target PC.
When the target application starts to run, the target scopes will start
automatically. A monitor is needed on your target PC to view the results.

Note When using target scopes with StandAlone mode, you must specify the
Scope Type as Target prior to generating code.

4 Embedded Option

4-18

5

Environment Reference

Environment 5-3
Environment Properties 5-3
Environment Functions 5-11

Using Environment Properties and Functions 5-12
Getting a List of Environment Properties 5-12
Saving and Loading the Environment 5-13
Changing Environment Properties with

Graphical Interface 5-14
Changing Environment Properties with

Command Line Interface 5-16
Creating a Target Boot Disk with Graphical Interface . . . 5-17
Creating a Target Boot Disk with Command Line Interface . 5-19

System Functions 5-20
GUI Functions 5-20
Test Functions 5-21
xPC Target Demos 5-21

Environment and System Function Reference 5-23

5 Environment Reference

5-2

The xPC Target environment defines connections and communication between
the host and target computers. It also, defines the build process for a real-time
application.

This chapter includes the following sections:

• “Environment” — List of environment properties and functions with a brief
description

• “Using Environment Properties and Functions” — Common tasks within
the xPC Target software environment

• “System Functions” — List of functions for testing and opening graphical
interfaces

Environment

5-3

Environment
The xPC Target environment defines the software and hardware environment
of the host PC as well as the target PC. An understanding of the environment
properties will help you to correctly configure the xPC Target environment.

This section includes the following topics:

• “Environment Properties” — List of properties with a brief description

• “Environment Functions” — List of functions with a brief description

Environment Properties
The environment properties define communication between the host PC and
target PC, the type of C compiler and its location, and the type of target boot
floppy created during the setup process. You can view and change these
properties using the environment functions or Setup window.

Table 5-1: List of Environment Properties

Environment
property

Description

Version xPC Target version number. Read-only.

Path xPC Target root directory. Read-only.

CCompiler Values are ’Watcom’ or ’VisualC’. From the
Setup window CCompiler list, choose either
Watcom or VisualC.

CompilerPath Value is a valid compiler root directory. Enter the
path where you installed a Watcom C/C++ or
Microsoft Visual C/C++ compiler.

If the path is invalid or the directory does not
contain the compiler, then when you use the
function updatexpcenv or build a target
application, an error message appears.

5 Environment Reference

5-4

TargetRAMSizeMB Values are ’Auto’ or ’MB of target RAM’.

From the Setup window TargetRAMSizeMB list,
choose either Auto or Manual. If you select
Manual, enter the amount of RAM, in megabytes,
installed on the target PC. This property is set by
default to Auto.

TargetRAMSizeMB defines the total amount of
installed RAM in the target PC. This RAM is used
for the, kernel, target application, data logging,
and other functions that use the heap.

If TargetRAMSizeMB is set to Auto, the target
application automatically determines the amount
of memory up to 64 MB. If the target PC does not
contain more than 64 MB of RAM, or you do not
want to use more then 64 MB, select Auto. If the
target PC has more than 64 MB of RAM, and you
want to use more than 64 MB, select Manual, and
enter the amount of RAM installed in the target
PC.

MaxModelSize Values are ’1MB’, ’4MB’, or ’16MB’.

From the Setup window MaxModelSize list,
choose either1 MB, 4 MB, or 16 MB.

Choosing the maximum model size reserves the
specified amount of memory on the target PC for
the target application. The remaining memory is
used by the kernel and by the heap for data
logging.

Selecting too high a value leaves less memory for
data logging. Selecting too low a value does not
reserve enough memory for the target application
and creates an error.

Table 5-1: List of Environment Properties

Environment
property

Description

Environment

5-5

SystemFontSize Values are ’Small’ or ’Large’.

From the Setup window SystemFontSize list,
choose either Small, or Large.

The xPC Target GUIs use this information to
change the font size.

CANLibrary Values are ’None’, ’200 ISA’, ’527 ISA’, ’1000
PCI’, ’1000 MB PCI’, or ’PC104’.

From the Setup window CANLibrary list, choose
None, 200 ISA, 527 ISA, 1000 PCI, 1000 MB PCI,
or PC104.

HostTargetComm Values are ’RS232’ or ’TcpIp’.

From the Setup window HostTargetComm list,
choose either RS232 or TCP/IP.

If you select RS232, you also need to set the
property RS232HostPort. If you select TCP/IP,
then you also need to set all properties that start
with TcpIp.

RS232HostPort Values are ’COM1’ or ’COM2’.

From the Setup window RS232HostPort list,
choose either COM1 or COM2 for the connection
on the host computer. xPC Target automatically
determines the COM port on the target PC.

Before you can choose an RS232 port, you need to
set the HostTargetComm property to RS232.

RS232Baudrate Values are ’115200’, ’57600’, ’38400’, ’19200’,
’9600’, ’4800’, ’2400’, or ’1200’.

From the RS232Baudrate list, choose 115200,
57600, 38400, 19200, 9600, 4800, 2400, or 1200.

Table 5-1: List of Environment Properties

Environment
property

Description

5 Environment Reference

5-6

TcpIpTargetAddress Value is ’xxx.xxx.xxx.xxx’.

In the Setup window TcpIpTargetAddress box,
enter a valid IP address for your target PC. Ask
you system administrator for this value.

For example, 192.168.0.1

TcpIpTargetPort Value is ’xxxxx’.

In the Setup window TcpIpTargetPort box, enter
a value greater than 20000.

This property is set by default to 22222 and should
not cause any problems. The number is higher
than the reserved area (telnet, ftp, ...) and it is only
of use on the target PC.

TcpIpSubNetMask Value is ’xxx.xxx.xxx.xxx’.

In the Setup window TcpIpSubNetMask text box,
enter the subnet mask of your LAN. Ask you
system administrator for this value.

For example, 255.255.0.0.

Table 5-1: List of Environment Properties

Environment
property

Description

Environment

5-7

TcpIpGateway Value is ’xxx.xxx.xxx.xxx’.

In the Setup window TcpIpGateway box, enter
the IP address for your gateway. This property is
set by default to 255.255.255.255 which means
that a gateway is not used to connect to the target
PC.

If you communicate with your target PC from
within a LAN that uses gateways, and your host
and target computers are connected through a
gateway, then you need to enter a value for this
property. If your LAN does not use gateways, you
do not need to change this property. Ask your
system administrator.

TcpIpTargetDirver Values are ’NE2000’ or ’SMC91C9X’.

From the Setup window TcpIpTargetDriver list,
choose either NE2000 or SMC91C9X. The
Ethernet card provided with xPC Target uses the
NE2000 driver.

TcpIpTargetBusType Values are ’PCI’ or ’ISA’.

From the Setup window TcpIpTargetBusType
list, choose either PCI or ISA. This property is set
by default to PCI, and determines the bus type of
your target PC. You do not need to define a bus
type for your host PC, which can be the same or
different from the bus type in your target PC.

If TcpIpTargetBusType is set to PCI, then the
properties TcpIpISAMemPort and TcpIpISAIRQ
have no effect on TCP/IP communication.

If you are using an ISA bus card, set
TcpIpTargetBusType to ISA and enter values for
TcpIpISAMemPort and TcpIpISAIRQ.

Table 5-1: List of Environment Properties

Environment
property

Description

5 Environment Reference

5-8

TcpIpTargetISAMemP
ort

Value is ’0xnnnn’.

If you are using an ISA-bus Ethernet card, you
must enter values for the properties
TcpIpISAMemPort and TcpIpISAIRQ. The
values of these properties must correspond to the
jumper settings or ROM settings on your ISA-bus
Ethernet card.

On your ISA-bus card, assign an IRQ and I/O-port
base address by moving the jumpers on the card.

We recommend setting the I/O-port base address
to around 0x300. If one of these hardware settings
leads to a conflict in your target PC, choose
another I/O-port base address and make the
corresponding changes to your jumper settings.

TcpIpTargetISAIRQ Value is ’n’ where n is between 4 and 15.

If you are using an ISA bus Ethernet card, you
must enter values for the properties
TcpIpISAMemPort and TcpIpISAIRQ. The
values of these properties must correspond to the
jumper settings or ROM settings on the ISA-bus
Ethernet card.

On your ISA-bus card, assign an IRQ and I/O-port
base address by moving the jumpers on the card.

We recommend setting the IRQ to 5, 10, or 11. If
one of these hardware settings leads to a conflict in
your target PC, choose another IRQ and make the
corresponding changes to your jumper settings.

Table 5-1: List of Environment Properties

Environment
property

Description

Environment

5-9

EmbeddedOption Values are ’Disabled’ or ’Enabled’. This
property is read-only.

Note The xPC Target Embedded Option is enabled
only if you purchase an additioanl license.

TargetScope Values are ’Disabled’ or ’Enabled’.

From the Setup window TargetScope list, choose
either Enabled or Disabled.

The property TargetScope is set by default to
Enabled. If you set TargetScope to Disabled,
then the target PC displays information as text.

To use all of the features of target scope, you also
need to install a keyboard and mouse on the target
PC.

Table 5-1: List of Environment Properties

Environment
property

Description

5 Environment Reference

5-10

TargetMouse Values are ’None’, ’PS2’, ’RS232 COM1’, ’RS232
COM2’.

From the Setup window TargetMouse list, choose
None, PS2, RS232 COM1, or RS232 COM2.

Before you can select a target mouse, you need to
set the Target Scope property to Enabled.

TargetMouse allows you to disable or enable
mouse support on the target PC:

• If you do not connect a mouse to the target PC,
you need to set this property to None, otherwise,
the target application may not behave properly.

• If the target PC supports PS/2 devices (keyboard
and mouse) and you connect a PS/2 mouse, set
this property to PS2.

• If you connect a serial RS232 mouse to the
target PC, choose either RS232 COM1 or RS232
COM2 depending on which serial port you
attached the mouse.

TargetBoot Values are ’BootFloppy’, ’DOSLoader’, or
’StandAlone’.

From the Setup window TargetBoot list, choose
either BootFloppy, DOSLoader, or StandAlone.

If your license file does not include the license for
the xPC Target Embedded Option, the Target
Boot box is disabled with BootFloppy as your
only selection. With the xPC Target Embedded
Option licensed and installed, you have the
additional choices of DOSLoader and
StandAlone.

Table 5-1: List of Environment Properties

Environment
property

Description

Environment

5-11

Environment Functions
The environment functions allow you to change the environment properties.
The functions are listed in the following table.

Table 5-2: List of Environment functions

Environment
functions

Description

getxpcenv List environment properties in the MATLAB
window or assign the list as a cell array to a
MATLAB variable.

setxpcenv First of two steps to change environment
properties. See also updatexpcenv.

updatexpcenv Changes the current environment properties to
equal the new properties entered using the
function setxpcenv.

xpcbootdisk Creates a boot floppy disk containing the kernel
according to the current environment properties.

5 Environment Reference

5-12

Using Environment Properties and Functions
You use the xPC Target Setup window to enter properties that are independent
of your model.

This section includes the following topics:

Changing Environment Properties

• “Getting a List of Environment Properties”
• “System Functions”
• “Changing Environment Properties with Graphical Interface”
• “Changing Environment Properties with Command Line Interface”

Target Boot Disk
• “Creating a Target Boot Disk with Graphical Interface”
• “Creating a Target Boot Disk with Command Line Interface”

To enter properties specific to your model and its build procedure, see
“Entering the Simulation Parameters” on page 3-8. These properties are saved
with your Simulink model.

Getting a List of Environment Properties
To use the xPC Target functions to change environment properties, you need
to know the names and allowed values of the properties. Use the following
procedure to get a list of the property names, their allowed values, and their
current values:

1 In the MATLAB window, type

setxpcenv

MATLAB displays a list of xPC Target environment properties and the
allowed values. For a list of the properties, see “Environment Properties” on
page 5-3

2 Type

getxpcenv

Using Environment Properties and Functions

5-13

MATLAB displays a list of xPC Target environment properties and the current
values.

3 Alternately, in the MATLAB window, type

xpcsetup

MATLAB opens the xPC Target Setup window with the current values.

Saving and Loading the Environment
This feature makes it easy and fast to switch between different xPC Target
environments:

1 In the xPC Target Setup window, and from the File menu, click Save
Settings.

The Save xPC Target Environment dialog box opens.

2 Enter the name of an environment file (*.mat). Select a directory, and then
click Save.

xPC Target saves the current environment properties.

After you have saved an xPC Target environment, you can load those
property values back into xPC Target.

3 From the File menu, click Load Settings.

The Load xPC Target Environment dialog box opens.

4 Select a directory with a previously saved environment file (*.mat). Select
the file, and then click Open.

5 In the xPC Target Setup window, click the Close button.

If you changed the environment properties, but do not click the Update
button, xPC Target displays a warning.

Even if you decide to continue with the exit process, you will not lose the values
you changed. However, the current environment does not reflect the changes
you made in the xPC Target Setup window. If you reopen the xPC Target Setup
window, the changes you made reappear, and the Update button is enabled.

5 Environment Reference

5-14

Changing Environment Properties with Graphical
Interface
xPC Target lets you define and change environment properties. These
properties include, the path to the C/C++ compiler, the host PC COM-port, the
logging buffer size, and many others. Collectively these properties are known
as the xPC Target environment.

To change an environment property using the xPC Target GUI, use the
following procedure:

1 In the MATLAB command window, type

xpcsetup

MATLAB opens the xPC Target Setup window.

Using Environment Properties and Functions

5-15

The xPC Target Setup window has two sections:

- xPC Target
- xPC Target Embedded Option

If your license does not include the xPC Target Embedded Option, the
TargetBoot box is grayed-out with BootFloppy as your only selection. With
the xPC Target Embedded Option, you have the additional choices of
DOSLoader and StandAlone.

2 Change properties in the environment by entering new property values in
the text boxes or choosing items from the lists.

After you make changes to the environment properties, you need to update
the xPC Target environment. Updating makes your changes in the xPC
Target Setup window equal to the current property values.

3 Click the Update button.

xPC Target updates the xPC Target environment and disables (grays-out)
the Update button. As long as the Update button is enabled, the xPC Target
environment needs to be updated.

5 Environment Reference

5-16

Changing Environment Properties with Command
Line Interface
xPC Target lets you define and change different properties. These properties
include, the path to the C/C++ compiler, the host COM-port, the logging buffer
size, and many others. Collectively these properties are known as the xPC
Target environment.

You can use the command line functions to write an M-file script that accesses
the environment settings according to your own needs. For example, you could
write an M-file that switches between two targets.

The following procedure shows how to change the COM port property for your
host PC from COM1 to COM2:

1 In the MATLAB window, type

setxpcenv(’RS232HostPort’,’COM2’)

The up-to-date column shows the values that you have changed, but have
not updated.

Making changes using the function setxpcenv does not change the current
values until you enter the update command.

2 In the MATLAB window, type

updatexpcenv

The environment properties you changed with the function setxpcenv
become the current values.

HostTargetComm
RS232HostPort
RS232Baudrate

:RS232
:COM2
:115200

up to date
COM2
up to date

HostTargetComm
RS232HostPort
RS232Baudrate

:RS232
:COM2
:115200

up to date
up to date
up to date

Using Environment Properties and Functions

5-17

Creating a Target Boot Disk with Graphical
Interface
You use the target boot disk to load and run the xPC Target kernel.

After you make changes to the xPC Target environment properties, you need
to create or update a target boot disk. To create a target boot disk for the
current xPC Target environment, use the following procedure:

1 In the MATLAB window, type

xpcsetup

The xPC Target Setup window opens.

2 Click the BootDisk button.

If you didn’t update the current settings, the following message box appears.

Click No. Click the Update button, and then click the BootDisk button
again.

After you update the current properties, and click the BootDisk button, the
following message box appears.

3 Insert a formatted floppy disk into the host PC disk drive, and then click OK.
All data on the disk will be erased.

The write procedure starts and while creating the boot disk, the MATLAB
command window displays the following status information. On Windows

5 Environment Reference

5-18

NT systems, the status information is displayed only at the end of the write
process.

xPC Target DiskWrite Utility Version 1.1,(c) 1998-2000 The
MathWorks, Inc.Read File:
C:\MATLAB\TOOLBOX\RTW\TARGETS\XPC\XPC\BIN\
..\..\target\kernel\xpcsgb1.rtd

Write Track 0- 9:uuuuuuuuuuuu
Write Track 10-19: uuuuuuuuuuuuuuuuuuuu
Write Track 20-29: uuuuuuuuuuuuuuuuuuuu
Write Track 30-39: uuuuuuuuuuuuuuuuuuuu
Write Track 40-49: uuuuuuuuuuuuuuuuuuuu
Write Track 50-59: uuuuuuuuuuuuuuuuuuuu
Write Track 60-69: uuuuuuuuuuuuuuuuuuuu
Write Track 70-79: uuuuuuuuuuuuuuuuuuuu

The process of creating a boot disk takes about 1 to 2 minutes.

4 Close the xPC Target Setup window.

5 Remove the target boot disk from the host PC disk drive. You may now use
this disk to boot your target PC.

To create a boot disk using the command line interface, see “Creating a Target
Boot Disk with Command Line Interface” on page 5-19.

Using Environment Properties and Functions

5-19

Creating a Target Boot Disk with Command Line
Interface
You use the target boot disk to load and run the xPC Target kernel.

After you make changes to the xPC Target environment properties, you need
to create or update a boot disk. To create a target boot disk for the current xPC
Target environment, use the following procedure:

1 In the MATLAB window, type

xpcbootdisk

xPC Target displays the following message.

Insert a formatted floppy disk into your host PC’s
disk drive and press any key to continue.

2 Insert a formatted floppy disk into the host PC disk drive, and then press
any key.

The write procedure starts and while creating the boot disk, the MATLAB
command window displays the following status information. On Windows
NT systems, the status information is displayed only at the end of the write
process.

xPC Target Disk Write Utility Version 1.1,
(c) 1998-1999 The MathWorks Inc.
Read File: C:\MATLAB\TOOLBOX\RTW\TARGETS\XPC\XPC\BIN\..\..
\target\kernel\xpcsgb1.rtd

Write Track 0- 9:
Write Track 10-19:uuuuuuuuuuuuuuuu
Write Track 20-29: uuuuuuuuuuuuuuuuuuuu
Write Track 30-39: uuuuuuuuuuuuuuuuuuuu
Write Track 40-49: uuuuuuuuuuuuuuuuuuuu
Write Track 50-59: uuuuuuuuuuuuuuuuuuuu
Write Track 60-69: uuuuuuuuuuuuuuuuuuuu
Write Track 70-79: uuuuuuuuuuuuuuuuuuuu

To create a boot disk using the graphical interface, see “Creating a Target Boot
Disk with Graphical Interface” on page 5-17.

5 Environment Reference

5-20

System Functions
The system functions allow you to open xPC Target GUIs and run tests from
the MATLAB window.

This section includes the following topics:

• “GUI Functions”
• “Test Functions”
• “xPC Target Demos”

GUI Functions
The GUI functions are listed in the following table.

Table 5-3: List of GUI Functions

System functions Description

xpcscope Opens the scope manager window on the host PC
for scopes with type host.

xpcsetup Opens the Setup window.

xpctargetspy Open the Target Spy window on the host PC. Use
this GUI to upload the target PC screen to the
host PC.

xpctest Test the xPC Target installation.

xpcscope Opens the scope manager window on the host PC
for scopes with type host.

xpcsetup Opens the Setup window.

xpctargetspy Open the Target Spy window on the host PC. Use
this GUI to upload the target PC screen to the
host PC.

xpctest Test the xPC Target installation.

System Functions

5-21

Test Functions
The test functions are listed in the following table.

xPC Target Demos
The xPC Target demos are used to demonstrate the features of xPC Target. But
they are also M-file scripts that you can view to understand how to write your
own scripts for creating and testing target applications.

The following table lists the demo scripts that we provide with xPC Target.

Table 5-4: List of Test Function

System functions Description

getxpcpci Determine which PCI boards are installed in the
target PC.

xpctargetping Test the communication between the host PC and
the target PC

xpctargetspy Open the Target Spy window on the host PC. Use
this GUI to upload the target PC screen to the
host PC.

xpctest Test the xPC Target installation.

Demo Filename

Parameter Sweep parsweepdemo

Signal tracing using free-run mode scfreerundemo

Signal tracing using software triggering scsoftwaredemo

Signal tracing using signal triggering scsignaldemo

Signal tracing using scope triggering scscopedemo

Signal tracing using the target scope. tgscopedemo

5 Environment Reference

5-22

To locate or edit a demo script

1 In the MATLAB window, type

scfreerundemo

MATLAB displays the location of the M-file.

D:\MATLAB\toolbox\rtw\targets\xpc\xpcdemos\scfreerundemo.m

2 Type

edit scfreerundemo

MATLAB opens the M-file in a MATLAB editing widow.

Environment and System Function Reference

5-23

Environment and System Function Reference
This section includes an alphabetical listing of the environment and system
functions.

For a list of the functions with a brief description, see:

• “Environment Functions” on page 5-11
• “GUI Functions” on page 5-20

• “Test Functions” on page 5-21

getxpcenv

5-24

5getxpcenvPurpose List environment properties assign to a MATLAB variable

 Syntax MATLAB Command Line

getxpcenv

Description Function for environment properties. This function displays, in the MATLAB
window, the property names, the current property values, and the new
property values set for the xPC Target environment.

Examples Return the xPC Target environment in the structure shown below. The output
in the MATLAB window is suppressed. The structure contains three fields for
property names, current property values, and new property values.

env =getxpcenv

env =
 propname: {1x25 cell}
 actpropval: {1x25 cell}
 newpropval: {1x25 cell}

Display a list of the environment property names, current values, and new
values.

env =getxpcenv

See Also The xPC Target functions setxpcenv, updatexpcenv, xpcbootdisk, and
xpcsetup.

getxpcpci

5-25

5getxpcpciPurpose Determine which PCI boards are installed in the target PC

Syntax MATLAB Command Line

getxpcpci(’type_of_boards’)

Arguments

Description The information is displayed in the MATLAB window. Only devices supported
by driver blocks in the xPC Target Block Library are displayed. The
information includes the PCI bus number, slot number, assigned IRQ number,
manufacturer name, board name, device type, manufacturer PCI Id, and the
board PCI Id itself.

For a successful query:

• The host-target communication link must be working. (The function
xpctargetping must return success before using the function getxpcpci.

• Either a target application is loaded or the loader is active. The latter is used
to query for resources assigned to a specific PCI device, which have to be
provided to a driver block dialog box prior to the model build process.

Examples Return the result of the query in the struct pcidevs instead of displaying it.
The struct pcidevs is an array with one element for each detected PCI device.
Each element combines the information by a set of fieldnames. The struct
contains more information compared to the displayed list, such as the assigned
base addresses, the base and sub class.

pcidevs = getxpcpci

Display the supported and installed PCI devices.

getxpcpci(’all’)

Display the installed PCI devices, not only the devices supported by the xPC
Target Block Library. This will include graphics controller, network cards,
SCSI cards and even devices which are part of the motherboard chipset (for
example PCI-to-PCI bridges).

getxpcpci(’all’)

type_of_boards Values are no arguments, ’all’ and ’supported’.

getxpcpci

5-26

Display a list of the currently supported PCI devices in the xPC Target block
library. The result is stored in a struct instead of displaying it.

getxpcpci(’supported’)

setxpcenv

5-27

5setxpcenvPurpose Change xPC Target environment properties.

Syntax MATLAB Command Line

setxpcenv('property_name’, 'property_value')
setxpcenv('prop_name1', 'prop_val1', 'prop_name2', prop_val2')
setxpcenv

Arguments

Description Function for environment properties. Enter new environment properties. If the
new value is different from the current value, the property is marked as having
a new values. Use the function updatexpcenv to change the current properties
to the new properties.

The function setxpcenv works similarly to the function set of the MATLAB
Handle Graphics system. The function setxpcenv must be called with an even
number of arguments. The first argument of a pair is the property name, and
the second argument is the new property value for this property.

Using the function setxpcenv without arguments returns a list of allowed
property values in the MATLAB window.

Examples List the current environment properties. For a description of properties and
allowed values, see “Environment Properties” on page 5-3.

setxpcenv

Change the host PC, serial communication port, to COM2.

setxpcenv(’HostCommPort’,’COM2’)

 See Also The xPC Target functions getxpcenv, updatexpcenv, xpcbootdisk, and
xpcsetup. The procedures “Changing Environment Properties with Graphical

property_name Not case sensitive. Property names can be shortened
as long as they can be differentiated from the other
property names.

property_value Character string. Type setxpcenv without
arguments to get a listing of allowed values. Property
values are not case sensitive.

setxpcenv

5-28

Interface” on page 5-14 and “Changing Environment Properties with
Command Line Interface” on page 5-16.

updatexpcenv

5-29

5updatexpcenvPurpose Change current environment properties to equal new properties

 Syntax MATLAB Command Line

updatexpcenv

Description Function for environment properties. This procedure includes creating
communication M-files as well as patching the xPC Target kernel and system
DLL’s. Calling the function updatexpcenv is necessary after new properties are
entered with the function setxpcenv, but before creating a target boot floppy
with the function xpcbootdisk.

See Also The xPC Target functions setxpcenv, getxpcenv, updatexpcenv, xpcbootdisk,
and xpcsetup. The procedures “Changing Environment Properties with
Graphical Interface” on page 5-14 and “Changing Environment Properties
with Command Line Interface” on page 5-16.

xpcbootdisk

5-30

5xpcbootdiskPurpose Create xPC Target boot disk, and confirm the current environment properties

Syntax MATLAB Command Line

xpcbootdisk

Description Function for environment properties. This function creates a xPC target boot
floppy for the current xPC Target environment which has been updated with
the function updatexpcenv. Creating an xPC Target boot floppy consists of
writing the correct bootable kernel image onto the disk. You are asked to insert
an empty, formatted floppy disk into the floppy drive.

All existing files are erased by the function xpcbootdisk. If the inserted floppy
disk already is an xPC Target boot disk for the current environment settings,
this function exits without writing a new boot image to the floppy disk. At the
end, a summary of the creation process is displayed.

If you update the environment, you need to update the target boot floppy for
the new xPC environment with the function xpcbootdisk.

Examples To create a boot floppy disk, in the MATLAB window, type

xpcbootdisk

See Also The xPC Target functions setxpcenv, getxpcenv, updatexpcenv, xpcbootdisk,
and xpcsetup. See also, the procedures “Creating a Target Boot Disk with
Graphical Interface” on page 5-17 and “Creating a Target Boot Disk with
Command Line Interface” on page 5-19.

xpcscope

5-31

5xpcscopePurpose Open a scope manager window on the host PC.

Syntax MATLAB Command Line

xpcscope

Description This graphical user interface (GUI) allows you to define scopes that display on
your host PC, choose signals, and control the data acquisition process.

See Also The xPC Target function xpctgscope and the procedures “Signal Tracing with
xPC Target GUI” on page 3-26 and “Signal Tracing with xPC Target GUI
(Target Manager)” on page 3-31.

xpcsetup

5-32

5xpcsetupPurpose Open the Setup window

 Syntax MATLAB Command Line

xpcsetup

Description This graphical user interface (GUI) allows you to:

• Enter and change environment properties

• Create an xPC Target boot floppy disk

See Also See also the functions setxpcenv, getxpcenv, updatexpcenv, xpcbootdisk, and
the procedures “I/O boards — If you use I/O boards on the target PC, you need
to correctly install the boards. See the manufactures literature for installation
instructions.” on page 2-12, “Environment Properties for Network
Communication” on page 2-20, and.

xpctargetping

5-33

5xpctargetpingPurpose Test communication between the host and target computers

Syntax MATLAB Command Line

xpctargetping

Examples Check for communication between the host PC and target PC.

xpctargetping

Description Ping’s the target PC from the host PC and returns either ’success’ or ’failed’. If
the xPC Target kernel is loaded, running, and communication is working
properly, this function returns the value ’success’.

This function works with both RS232 and TCP/IP communication.

ans =
success

See Also The xPC Target procedure “Testing and Troubleshooting the Installation” on
page 2-26.

xpctargetspy

5-34

5xpctargetspyPurpose Open an xPC Target Spy window on the host PC

Syntax MATLAB Command Line

xpctargetspy

Description This graphical user interface (GUI) allows you to upload displayed data from
the target PC.

The behavior of this function depends on the value for the environment
property TargetScope.

• If TargetScope is enabled, a single graphics screen is uploaded. The screen is
not continually updated because of a higher data volume when a target
graphics card is in VGA mode.

To update the host screen with another target screen, move the pointer into
the Spy window and left-click.

• If TargetScope is disabled, text output is continuously transferred every
second to the host and displayed in the window.

Examples To open the Target Spy window, in the MATLAB window, type

xpctargetspy

See Also The xPC Target procedures “I/O boards — If you use I/O boards on the target
PC, you need to correctly install the boards. See the manufactures literature
for installation instructions.” on page 2-12 and “Environment Properties for
Network Communication” on page 2-20.

xpctest

5-35

5xpctestPurpose Test the xPC Target installation

Syntax MATLAB Command Line

xpctest
xpctest(’reboot_flag’)

Arguments

Description Series of xPC Target tests to check the correct functioning of the following xPC
Target tasks:

• Initiate communication between the host and target computers.

• Reboot the target PC to reset the target environment.

• Build a target application on the host PC.

• Download a target application to the target PC.

• Check communication between the host and target computers using
commands.

• Execute a target application.

• Comparing the results of a simulation and the target application run.

xpctest(’noreboot’) skips test 2. Use this option if target hardware does not
support software rebooting.

Examples If the target hardware does not support software rebooting, and to skip test 2,
in the MATLAB window, type

xpctest(’noreboot’)

See Also The procedures “Testing and Troubleshooting the Installation” on page 2-26
and “Test 1, Ping Target System Standard Ping” on page 2-27.

reboot_flag noreboot. Skips the reboot test. User this option if
the target hardware does not support software
rebooting. Value is 'noreboot'

xpctgscope

5-36

5xpctgscopePurpose Open the target scope manager window.

Syntax MATLAB Command Line

xpctgscope

Description This graphical user interface (GUI) allows you to define scopes that display on
your target PC, choose signals, and control the data acquisition process.

See Also The xPC Target function xpcscope and the procedures “Signal Tracing with
xPC Target GUI (Target Manager)” on page 3-31 and “Signal Tracing with xPC
Target GUI” on page 3-26.

xpcwwwenable

5-37

5xpcwwwenablePurpose Disconnect the target PC from the current client application

Syntax MATLAB Command Line

xpcwwwenable

Description Use this function to disconnect the target application from MATLAB before you
connect to the Web browser. Also, you can use this function to connect to
MATLAB after using a Web browser, or switch to another Web browsers.

xpcwwwenable

5-38

6
Target Object Reference

Target Object 6-3
What is a Target Object? 6-3
Target Object Properties 6-4
Target Object Methods 6-9
Target PC Commands 6-11

Using Target Objects 6-13
Displaying Target Object Properties 6-13
Setting the Value of a Target Object Property

from the Host PC 6-14
Setting the Value of a Target Object Property

from the Target PC 6-15
Getting the Value of a Target Object Property 6-16
Using the Method Syntax with Target Objects 6-17

6 Target Object Reference

6-2

Use target objects to run and control real-time applications on the target PC.

This chapter includes the following sections:

• “Target Object” — Definition, properties, and methods

• “Using Target Objects” — Changing properties, and running methods

Target Object

6-3

Target Object
xPC Target uses a target object to represent the target application and target
kernel. An understanding of the target object properties and methods will help
you to control and test your application on the target PC.

This section includes the following topics:

• “What is a Target Object?”
• “Target Object Properties”
• “Target Object Methods”

What is a Target Object?
A target object on the host PC represents the interface to a target application
and the kernel on the target PC. You use target objects to run and control the
target application.

When you change a target object property on the host PC, information is
exchanged with the target PC and the target application.

To create a target object:

• Build a target application. xPC Target creates a target object during the
build process.

• Use the target object constructor function xpc. In the MATLAB window, type
tg = xpc.

A target object has associated properties and methods specific to that object.

6 Target Object Reference

6-4

Target Object Properties
Target object properties let you access information from your target application
and control its execution. You can view and change these properties using
target object methods.

The properties for a target object are listed in the following table. This table
includes a description of the properties and which properties you can change
directly by assigning a value.

Table 6-1: List of Target Object Properties

Property Description Write

Connected Communication status between the host PC
and the target PC. Values are ’Yes’ or ’No’.

Application Name of the Simulink model and target
application build from that model.

Mode Type of Real-Time Workshop code generation.
Values are ’Real-Time Singletasking’,
’Real-Time Multitasking’, or
’Accelerate’. The default value is
’Real-Time Singletasking’.

Note Even if you select Real-Time
Multitasking, the actual mode can be
Real-Time Singletasking. This happens if your
model contains only one or two tasks and the
sample rates are equal.

Status Execution status of your target application.
Values are ’stopped’ or ’running’.

CPUoverload CPU status for overload. If the target
application requires more CPU time than the
sample time of the model, this value is set
from ’none’ to ’detected’ and the current
run is stopped. Correcting CPUoverload
requires either a faster processor or a larger
sample time.

Target Object

6-5

ExecTime Execution Time. Time, seconds, since your
target application started running. When the
target application stops, the total execution
time is displayed.

SessionTime Time since the kernel started running on your
target PC. This is also the elapsed time since
you booted the target PC. Values are in
seconds.

StopTime Time when the target application stops
running. Values are in seconds. The original
value is set in the Simulink Simulation
Parameters dialog box.

When the ExecutionTime reaches the
StopTime, the application stops running.

Yes

SampleTime Time between samples. This value equals the
step size, in seconds, for updating the model
equations and post the outputs.

Yes

AvgTET Average task execution time. This value is an
average of the measured CPU times, in
seconds, to run the model equations and post
outputs during each sample interval. Task
execution time is nearly constant with minor
deviations due to cache, memory access,
interrupt latency, and multirate model
execution.

MinTET Minimum task execution time. Corresponds to
the fastest time (smallest time measured), in
seconds, to update model equations and post
outputs.

Table 6-1: List of Target Object Properties

Property Description Write

6 Target Object Reference

6-6

MaxTET Maximum task execution time. Corresponds
to the slowest time (longest time measured),
in seconds, to update model equations and
post outputs.

ViewMode Displays either all scopes or a single scope on
the target PC. Values are ’all’ or a single
scope index. This property is active only if the
environemnt property TargetScope is set to
enabled.

Yes

TimeLog Storage in the MATLAB workspace for the
time or t-vector logged during execution of the
target application.

StateLog Storage in the MATLAB workspace for the
state or x-vector logged during execution of
the target application.

OutputLog Storage in the MATLAB workspace for the
output, or y-vector logged during execution of
the target application.

TETLog Storage in the MATLAB workspace for a
vector containing task execution times during
execution of the target application.

To enable logging of the TET, you need to
check the Log Task Execution Time box
located at Simulation Parameters dialog box>
Real-Time Workshop page > Category:xPC
Target code generation options group

Table 6-1: List of Target Object Properties

Property Description Write

Target Object

6-7

MaxLogSamples Maximum number of samples for each logged
signal within the circular buffers for TimeLog,
StateLog, OutputLog, and TETLog. StateLog
and OutputLog can have one or more signals.

This value is calculated by dividing the Signal
Logging Buffer Size by the number of logged
signals. The Signal Logging Buffer Size box
is located at Simulation Parameters dialog
box> Real-Time Workshop page >
Category:xPC Target code generation options
group.

NumLogWraps The number of times the circular buffer
wrapped. The buffer wraps each time the
number of samples exceeds MaxLogSamples.

LogMode Controls which data points are logged.

• Equi-distant time. Logs a data point at
every time interval. Set value to ’normal’.

• Equi-distant amplitude. Logs a data point
only when one of the output values from the
OutputLog changes by a specified
amplitude. Set value to a signal value.

Yes

Scopes List of index numbers with one index for each
scope.

NumSignals The number of signals from your Simulink
model that are available to be viewed with a
scope.

ShowSignals Flag set to view or hide the list of signals from
your Simulink blocks. This list is shown when
you display the properties for a target object.
Values are ’on’ or ’off’.

Yes

Table 6-1: List of Target Object Properties

Property Description Write

6 Target Object Reference

6-8

Signals List of viewable signals. This list is visible
only when ShowSignals is set to ’on’.

• Property name. S0, S1. . .

• Property value. Value of the signal

• Block Name. Name of the Simulink block
the signal is from.

S# Property name for a signal.

NumParameters The number of parameters from your
Simulink model that you can tune or change.

ShowParameters Flag set to view or hide the list of parameters
from your Simulink blocks. This list is shown
when you display the properties for a target
object. Values are ’on’ or ’off’.

Yes

Parameters List of tunable parameters. This list is visible
only when ShowParameters is set to ’on’.

• Property name. P0, P1. . .

• Property value. Value of the parameter in a
Simulink block.

• Type. Datatype of the parameter. Always
double.

• Size. Size of the the parameter. For
example, scalar, 1x2 vector, or 2x3 matrix.

• Parameter name. Name of a parameter in a
Simulink block.

• Block name. Name of a Simulink block

Yes

P# Property name for block parameter.

Table 6-1: List of Target Object Properties

Property Description Write

Target Object

6-9

Target Object Methods
The target object methods allow you to control a target application on the
target PC from the host PC.

Target object methods are entered in the MATLAB window on the host PC. You
can also control the target application from the target PC using target PC
commands. See “Target PC Commands” on page 6-11.

The methods are listed in the following table.

Table 6-2: List of Target Object Methods

Method Description

xpc Creates a target object on the host PC (constructor).

set Sets writable target object properties to the specified
value.

get Returns the value of readable properties from a target
object.

start Starts the execution of a target application on the
target PC.

stop Stops the execution of a target application on the target
PC.

load Downloads a target application from the host PC to the
target PC.

unload Unloads a target application from the target PC. If a
target application is running, it is stopped and
unloaded.

addscope Creates a new scope with type ’host’ or ’target’ on
the target PC.

getscope Returns the properties of a previously created scope
from the target PC. The scope properties can be
assigned to a MATLAB variable to create a scope
object.

6 Target Object Reference

6-10

remscope Removes a scope from the target PC. This method does
not remove the scope object, on the host PC, that
represent the scope.

getparamid Returns the property name or index of a parameter
from the target object.

getsignalid Returns the property name or index of a signal from the
target object.

getlog Uploads and returns one of the data logs from the
target PC to the host PC. TimeLog, StateLog,
OutputLog, TETLog

reboot Reboot the target PC. If a target application is running,
the target application is stopped, and then the target
PC is rebooted.

close Close the serial connection to the target PC so that the
host PC can use the COMM port for another device.

Table 6-2: List of Target Object Methods

Method Description

Target Object

6-11

Target PC Commands
The target PC commands allow you to control a target application on the target
PC from the target PC.

Target PC commands are entered in the target PC command window on the
target PC. You can also control the target application from the host PC using
target object methods. See “Target Object Methods” on page 6-9.

The commands are listed in the following table.

Table 6-3: List of Target PC Commands

Command Description

delallvar Delete all variables.
Syntax: delvar

delvar Delete a variable.
Syntax: delvar variable_name

getpar Displays the value of a block parameter using the
parameter index.

Syntax: setpar parameter_index

getvar Display the value of a variable.
Syntax: getvar variable_name

P# Display or change the value of a block parameter. For
example, P2 or P2=1.23e-4

Syntax: parameter_name, or
parameter_name = floating_point_number

S# Displays the value of a signal. For example, S2.

Syntax: signal_name.

sampletime Enter a new sample time.
Syntax: sampletime = floating_point_number

6 Target Object Reference

6-12

setpar Changes the value of a block parameter using the
parameter index.

Syntax: setpar parameter_index =
floating_point_number

setvar Sets a variable to a value. Later you can use that
variable to do a macro expansion.
Syntax: setvar variable_name = target_pc_command

For example, you can type setvar aa=startscope 2,
setvar bb=stopscope 2

showvar Display a list of variables.
Syntax: showvar

stoptime Enter a new stop time. Use inf to run the target
application until you manually stop it or reset the
target PC.
Syntax: stoptime = floating_point_number

viewmode Zoom in to one scope, or zoom out to all scopes.

Syntax: viewmode scope_number, or viewmode ’all’

Table 6-3: List of Target PC Commands

Command Description

Using Target Objects

6-13

Using Target Objects
xPC Target uses a target object to represent the target application and target
kernel. This section shows some of the common tasks that you use with target
objects.

This section includes the following topics:

• “Displaying Target Object Properties”

• “Setting the Value of a Target Object Property from the Host PC”
• “Setting the Value of a Target Object Property from the Target PC”
• “Getting the Value of a Target Object Property”

• “Using the Method Syntax with Target Objects”

Displaying Target Object Properties
You may want to list the target object properties to monitor a target
application. The properties include the execution time, and average task
execution time.

After you build a target application and target object from a Simulink model,
you can list the target object properties. This procedure uses the default target
object name tg as an example:

1 In the MATLAB window, type
tg

The current target application properties are uploaded to the host PC, and
MATLAB displays a list of the target object properties with the updated
values.

Note the target objects properties for TimeLog, StateLog, OutputLog, and
TETLog are not updated at this time.

For a list of target object properties with a description, see “Target Object
Properties” on page 6-4.

6 Target Object Reference

6-14

Setting the Value of a Target Object Property from
the Host PC
You can change a target object property by using xPC Target methods on the
host PC.

With xPC Target you can use either a function syntax or an object property
syntax. The syntax set(target_object, property_name, new_property_value)
can be replaced by:

target_object.propety_name = new_property_value.

For example, to change the stop time mode for the target object tg:

1 In the MATLAB window, type

tg.stoptime = 1000

2 Alternately, you could type

set(tg, ’stoptime’, 1000)

Parameters are also target object properties. For example, to change the
frequency of the signal generator in the model xpcosc:

1 In the MATLAB window, type

tg.p2 = 30

2 Alternately, you could type

set(tg, ’p2’, 30)

When you change a target object property, the new property value is
downloaded to the target PC. The xPC Target kernel then receives the
information and changes the behavior of the target application.

To get a list of the writable properties, type set(target_object). The build
process assigns the default name of the target object to tg.

Using Target Objects

6-15

Note Method names are case-sensitive and need to be complete, but property
names are not case-sensitive and need not be complete as long as they are
unique.

Setting the Value of a Target Object Property from
the Target PC
You can type commands directly from a keyboard on the target PC. These
commands create a temporary difference between the behavior of the target
application and the properties of the target object. The next time you access the
target object, the properties are updated from the target PC:

1 On the target PC keyboard, press C, or point the target mouse in the
command window.

The target PC activates the command window.

2 Type a target command. For example, to change the frequency of the signal
generator (parameter 2) in the model xpcosc, type

setpar 2=30

3 Change the stop time. For example to set the stop time to 1000 type

stoptime = 1000

The parameter changes are make to the target application but not to the
target object. When you type any xPC Target command in the MATLAB
command window, the target PC returns the present properties to the target
object.

Note The target PC command setpar does not work for vector parameters.

6 Target Object Reference

6-16

Getting the Value of a Target Object Property
You can list a property value in the MATLAB window, or assign that value to
a MATLAB variable. With xPC Target you can use either a function syntax or
an object property syntax.

The syntax get(target_object, property_name) can be replaced by

target_object.propety_name

For example, to access the start time:

1 In the MATLAB window, type

endrun = tg.stoptime

2 Alternately, you could type

endrun = get(tg,’stoptime’) or tg.get(’stoptime’)

Signals are also target object properties. For example, to get the value of the
Integrator1 signal from the model xpcosc:

1 In the MATLAB window, type

outputvalue= tg.S0

2 Alternately, you could type

outputvalue = get(tg, ’s2’) or tg.get(’s2’)

To get a list of readable properties, type target_object. Without assignment
to a variable, the property values are listed in the MATLAB window.

Note Method names are case-sensitive and need to complete, but property
names are not case-sensitive and need not be complete as long as they are
unique.

Using Target Objects

6-17

Using the Method Syntax with Target Objects
Use the method syntax to run a target object method. The syntax
method_name(target_object, argument_list) can be replaced with:

target_object.method_name(argument_list)

Unlike properties, for which partial but unambiguous names are permitted,
method names must be entered in full, and in lowercase. For example, to add a
scope of type target with a scope index of 1:

1 In the MATLAB window, type

tg.addscope(’target’,1)

2 Alternately, you could type

addscope(tg, ’target’, 1)

addscope

6-18

6addscopePurpose Creates one or more scopes on the target PC

 Syntax MATLAB command line

Creating a scope and scope object without assigning to a MATLAB variable.

addscope(target_object, ’scope_type’, new_scope_index)
target_object.addscope(’scope_type’, new_scope_index).

Creating a scope, scope object, and assign to a MATLAB variable.

scope_object = addscope(target_object,’scope_type’,
new_scope_index)

scope_object = target_object.addscope(’target’, new_scope_index)

Target PC command line - When using this command on the target PC, it is
limited to adding a scope of type target.

addscope
addscope new_scope_index

Arguments

Description Method of a target object. Creates a scope on the target PC, a scope object on
the host PC, and updates the target object property Scopes. This method
returns a scope object vector. If the result is not assigned to a variable, the
scope object properties are listed in the MATLAB window. If you try to add a
scope with the same index as an existing scope, the result is an error.

A scope acquires data from the target application and displays that data on the
target PC or uploads the data to the host PC.

target_object Name of a target object.

scope_type Values are ’host’ or ’target’. This argument is
optional with host as the default value.

new_scope_index Vector of new scope indices. This argument is
optional with the next available integer in the
target object property Scopes as the default
value.
If you enter a scope index for an existing scope
object, the result is an error.

addscope

6-19

All Scopes of type target or host run on the target PC

Scope of type target - Data collected is displayed on the target screen and
acquisition of the next data package is initiated by the kernel.

Scope of type host - Collects data and waits for a command from the host PC
for uploading the data. The data is then displayed using the host scope GUI
(xpcscope) or other MATLAB functions.

Examples Create a scope and scope object sc1 using the method addscope. A target scope
is created on the target PC with an index of 1, a scope object is created on the
host PC, and it is assigned to the variable sc1. The target object property
Scopes is changed from No scopes defined to 1.

sc1 = addscope(tg,’target’,1) or sc1 = tg.addscope(’target’,1)

Create a scope with the method addscope and then to create a scope object,
corresponding to this scope, using the method getscope. A target scope is
created on the target PC with an index of 1, a scope object is created on the host
PC, but it is not assigned to a variable. The target object property Scopes is
changed from No scopes defined to 1.

addscope(tg,’target’,1) or tg.addscope(’target’,1)
sc1 = getscope(tg,1) or sc1 = tg.getscope(1)

Create two scopes using a vector of scope objects scvector. Two target scopes
are created on the target PC with a scope index of 1 and 2, two scope objects are
created on the host PC that represent the scopes on the target PC. The target
object property Scopes is changed from No scopes defined to 1,2.

scvector = addscope(tg, ’target’, [1, 2])

target
object

target
application

Host PC Target PC

kernel

Scope engine

addscope

kernel

Scope engine

target
object

target
application

Host PC Target PC

scope
scope
object

addscope

6-20

See Also The xPC Target target object methods remscope, getscope. The xPC Target
GUI function xpcscope. The xPC target M-file demo scripts listed in “xPC
Target Demos” on page 5-21.

close

6-21

6closePurpose Closes the serial port connecting the host PC with the target PC

Syntax MATLAB command line

close(target_object)

Arguments

Description Method of a target object. If you want to use the serial port for another function
without quiting MATLAB, for example a modem, use this function to close the
connection.

target_object Name of a target object.

get

6-22

6getPurpose Return the property values for target and scope objects.

Syntax MATLAB command line
get(target_object, ’target_object_property’)

Arguments

Description Method of target objects. Gets the value of readable target object properties
from a target object.

Examples List the value for the target object property StopTime. Notice the property
name is a string, in quotes, and not case-sensitive.

get(tg,'stoptime’) or tg.get('stoptime')

ans = 0.2

See Also The xPC Target target object method set.The scope object methods get and
set. The built in MATLAB functions get and set.

target_object Name of a target object

target_object_property Name of a target object property.

getlog

6-23

6getlogPurpose Get all or part of the output logs from the target object

 Syntax MATLAB command line

log = getlog(target_object, ’log_name’, start_time,
number_points, interleave)

Arguments

Description Method of a target object. Use this function instead of the function get when
you want only part of the data.

Examples To get the first 1000 points in a log.

Outlog = getlog(tg, ’TETLog’, 0, 1000)

To get every other point in the output log and plot values.

Output_log = getlog(tg, TETLog, 0, ,2)
Time_log = getlog(tg, TimeLog, 0, ,2)
plot(time_log, output_log)

See Also The xPC Target target object methods get. The procedures “Entering the
Simulation Parameters” on page 3-8, “Entering the Simulation Parameters” on
page 3-8.

log User defined MATLAB variable.

log_name Values are TimeLog, StateLog, OutputLog, or
TETLog. This argument is required.

first_point First data point. The logs begin with 1. This
argument is optional. Default is 1

number_points Number of points after the start time. This
argument is optional. Default is all points in log.

interleave 1 returns all sample points. n returns every nth
sample point. This argument is optional, Default
is 1.

getparamid

6-24

6getparamidPurpose Get a parameter index or property name from the parameter list

Syntax MATLAB command line

getparamid(target_object, ’block_name’, ’parameter_name)
getparamid(target_object, ’block_name’, ’parameter_name’,
’flag’)

Arguments target_object

Description Method of a target object. Returns the index of a parameter in the parameter
list based on the path to the parameter name. The names must be entered in
full and are case-sensitive.

Examples Get the property name for the parameter Gain in the Simulink block Gain1,
incrementally increase gain, and pause to observe signal trace.

id = getparamid(tg, ’Subsyste/Gain1’, ’Gain’)
for i = 1 : 3
set(tg, id, i*2000);
pause(1);

end

Get the property name (P0, P1, . . .) of a single block.

getparamid(tg, ’Gain1’, ’Gain’)

Get the property index (0, 1, . . .) of asingal block.

getparamid(tg, ’Gain1’, ’Gain’, ’numeric’)

P5 is a property of the target object. For example, you could assign a value to
the gain with tg.p5 = 1000.

Name of a target object. The default name is tg.

block_name Simulink block path and name.

parameter_name Name of a parameter within a Simulink block

flag If flag = property, then return the property name
for the parameter. If flag = numeric, then return a
number index. This argument is optional with the
default behavior to return a property name.

getparamid

6-25

See Also The xPC Target scope object method getsignalid. The xPC target M-file demo
scripts listed in “xPC Target Demos” on page 5-21.

getscope

6-26

6getscopePurpose Gets a scope object pointing to a scope already defined in the kernel

 Syntax MATLAB command line

scope _object_vector = getscope(target_object, scope_index)

scope_object_vector = target_object.getscope(scope_index)

Arguments target_object

Description Method of a target object. Returns a scope object vector. If you try to get an
nonexistent scope, the result is an error. The list of existing scopes may be
retrieved using the method get(target_object, ’scopes’) or target_object.scopes.

Examples If your Simulink model has an xPC Target scope block, a scope of type target is
created at the time the target application is downloaded to the target PC. To
change the number of samples, you need to create a scope object and then
change the scope object property NumSamples.

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
sc1.NumSample = 500

Name or a target object.

scope_index_vector Vector of existing scope indices listed in the target
property Scopes. The vector may have only one
element.

scope_object_vector MATLAB variable for a new scope object vector.
The vector many have only one scope object.

getscope

target
object

target
application

Host PC Target PC

scope

kernel

Scope engine
kernel

Scope engine

target
object

target
application

Host PC Target PC

scope
scope
object

getscope

6-27

To get the properties of all scopes on the target PC and create a vector of scope
objects on the host PC. If the target object has more than one scope, creates a
vector or scope objects.

scvector = getscope(tg)

See Also The xPC Target target object methods addscope and remscope. The xPC target
M-file demo scripts listed in “xPC Target Demos” on page 5-21.

getsignalid

6-28

6getsignalidPurpose Get the signal index or property name from the signal list

 Syntax MATLAB command line

getsignalid(target_object, ’block_name’)
getsignalid(target_object, ’block_name’, ’flag’)

Arguments

Description Method of a target object. Returns the index or name of a signal from the signal
list, based on the path to the signal name. The block names must be entered in
full and are case-sensitive.

Examples Get the property name for the parameter Gain in the Simulink block Gain1.

getsignalid(tg, ’Gain1’) or tg.getsignal(’Gain1’)
ans = S6

Get the property index for the parameter Gain in the Simulink block Gain1.

getsignalid(tg, ’Gain1’, ’Gain’, ’numeric’)
ans = 6

S6 is a property of the target object. For example, you could get the value of a
signal with signal_6 = tg.s6.

See Also The target object method getparamid. The xPC target M-file demo scripts
listed in “xPC Target Demos” on page 5-21.

target_object Name of an existing target object.

block_name Name of a Simulink block from you model.

flag If flag = property, then return the property name
for the signal. If flag = numeric, then return a
number index. This argument is optional with the
default behavior to return a number.

load

6-29

6loadPurpose Download a target application to the target PC

Syntax MATLAB command line

load(target_object,’target_application’)
target_object.load(’target_application’)

Arguments

Description Method of a target object. Before using this function, the target PC must be
booted with the xPC Target kernel, and the target application must be built in
the current working directory on the host PC.

If an application was previously loaded, the old target application is first
unloaded before downloading the new target application. The method load is
called automatically after the RTW build process.

Examples Load the target application xpcosc represented by the target object tg.

load(tg,’xpcosc’) or tg.load(’xpcosc’)
+tg or tg.start or start(tg)

See Also The xPC Target function unload. The xPC target M-file demo scripts listed in
“xPC Target Demos” on page 5-21.

target_object Name of an existing target object

target_application Simulink model and target application name.

reboot

6-30

6rebootPurpose Reboot the target PC

Syntax MATLAB command line

reboot(target_object)

Target PC command line

reboot

Arguments

Description Method of a target object. Reboots the target PC, and if a target boot disk is
still present, the xPC target kernal is reloaded.

You can also use this method to reboot the target PC back to Windows after
removing the target boot disk.

Note This method may not work on some target hardware.

See Also The xPC Target target object methods load and unload.

target_object Name of an existing target object

remscope

6-31

6remscopePurpose Remove a scope from the target PC.

Syntax MATLAB command line

remscope(target_object, scope_index_vector)
target_object.remscope(scope_index_vector)

remscope(target_object)
target_object.remscope

Target PC command line

remscope scope_index
remscope ’all’

Arguments

Description Method of a target object. If a scope index is not given, then the method
remscope deletes all scopes on the target PC. The method remscope has no
return value. The scope object representing the scope on the host PC is not
deleted.

Examples Remove a single scope.

remscope(tg,1) or tg.remscope(1)

target_object Name of a target object. The default name it tg.

scope_index_vector Vector of existing scope indices listed in the target
property Scopes.

scope_index Single scope index.

remscope

kernel

Scope engine

target
object

target
application

Host PC Target PC

scope
scope
object

kernel

Scope engine

target
object

target
application

Host PC Target PC

scope
object

remscope

6-32

Remove two scopes.

remscope(tg,[1 2]) or tg.remscope([1,2])

Remove all scopes.

remscope(tg) or tg.remscope

See Also The xPC Target target object methods addscope and getscope. The xPC target
M-file demo scripts listed in “xPC Target Demos” on page 5-21.

set

6-33

6setPurpose Change property values for target objects

Syntax MATLAB command line

set(target_object)

set(target_object, property_name1, property_value1,
property_name2, property_value2, . . .)

target_object.set(’property_name1’, property_value1)

set(target_object, property_name_vector, property_value_vector)

target_object_name.property_name = property_value

Target PC command line - Commands are limited to the target object
properties: stoptime, sampletime, and parameters.

parameter_name = parameter_value
stoptime = floating_point_number
sampletime = floating_point_number

Arguments

Description Method of a target object. Sets the properties of the target object. Not all
properties are user-writable.

Properties must be entered in pairs, or using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they have to both be
row vectors or both column vectors, and the corresponding values for properties
in property_name_vector are stored in property_value_vector.

The function set typically does not return a value. However, if called with an
explicit return argument, for example, a = set(target_object, property_name,

target_object Name of a target object

property_name Name of a scope object property. Always use
quotes

property_value Value for a scope object property. Always use
quotes for character strings, quotes are optional
for numbers.

parameter_name The letter p followed by the parameter index. For
example, p0, p1, p2.

set

6-34

property_value), it returns the value of the properties after the indicated
settings have been made.

Examples Get a list of writable properties for a scope object.

sc1 = getscope(tg,1)
set(sc1)

xPC Target Object:
 Writable Properties

 StopTime
 SampleTime
 ViewMode
 LogMode : [0 | 1]
 ShowParameters : [On | {Off}]
 ShowSignals : [On | {Off}]

Change the property showsignals to on.

tg.set(’showsignals’, ’on’) or set(tg, ’showsignals’, ’on’)

As an alternative to the method set, use the target object property
showsignals. In the MATLAB window, type

tg.showsignals =’on’

See Also The xPC Target target object methods get. The scope object methods get and
set. The built in MATLAB functions get and set. The xPC target M-file demo
scripts listed in “xPC Target Demos” on page 5-21.

start

6-35

6startPurpose Start execution of a target application on a target PC.

Syntax MATLAB command line

start(target_object)
target_object.start
+target_object

Target PC command line

start

Arguments

Description Method of both target and scope objects. Starts execution of the target
application represented by the target object. Before using this method, the
target application must be created and loaded on the target PC. If a target
application is running, this command has no effect.

Examples Start the target application represented by the target object tg.

+tg or tg.start or start(tg)

See Also The xPC Target target object methods stop on page 6-36, load on page 6-29,
and unload on page 6-37. The scope object method stop on page 7-20.

target_object Name of a target object. The default name is tg.

stop

6-36

6stopPurpose Stop execution of a target application on a target PC.

 Syntax MATLAB command line

stop(target_object)
target_object.stop
-target_object

Target PC command line

stop

Arguments

Description Stops execution of the target application represented by the target object. If the
target application is stopped, this command has no effect.

Examples Stop the target application represented by the target object tg.

stop(tg) or tg.stop or -tg

See Also The xPC Target target object method start on page 6-35. The scope object
methods stop on page 7-20 and start on page 7-18.

target_object Name of a target object.

unload

6-37

6unloadPurpose Removes the current target application from the target PC.

 Syntax MATLAB command line

unload(target_object)
target_object.unload

Arguments

Description Method of a target object. The kernel goes into loader mode is ready to
download new target application from the host PC.

Examples Unload the target application represented by the target object tg.

unload(tg) or tg.unload

See Also The xPC Target methods load and reboot.

target_object Name of a target object that represents a target
application.

xpc

6-38

6xpcPurpose Create a target object representing the target application

 Syntax MATLAB command line

target_object = xpc

Arguments

Description Constructor of a target object. The target object represents the target
application and target PC. Changes are made to the target application by
making changes to the target object using methods and properties.

Examples Before you build a target application, you can check the connection between
your host and target computers by creating a target object.

tg = xpc

xPC Object

 Connected = Yes
 Application = loader

See Also The xPC Target methods get on page 6-22, set on page 6-33.

target_object Variable name to reference the target object.

7
Scope Object Reference

Scope Object 7-3
What is a Scope Object? 7-3
Scope Object Properties 7-3
Scope Object Methods 7-6

Using Scope Objects 7-8
Displaying Scope Object Properties for a Single Scope 7-8
Displaying Scope Object Properties for All Scopes 7-9
Setting the Value of a Scope Property 7-9
Getting the Value of a Scope Property 7-10
Using the Method Syntax with Scope Objects 7-11

7 Scope Object Reference

7-2

Use scope objects to run and control scopes on the target PC.

This chapter includes the following sections:

• “Scope Object” — Definition, properties, and methods

• “Using Scope Objects” — Changing properties, and running methods

Scope Object

7-3

Scope Object
xPC Target uses scopes and scope objects as an alternative to using Simulink
scopes and external mode. Understanding the structure of scope objects will
help you to develop a mental model of the xPC Target software environment.

This section includes the following topics:

• “What is a Scope Object?” — Definition, and ways to create scope objects

• “Scope Object Properties” — List of properties with definitions

• “Scope Object Methods” — List of methods with definitions

What is a Scope Object?
A scope object on the host PC represents a scope on the target PC. You use
scope objects to observe the signals from your target application during a
real-time run or analyze the data after the run is finished.

To create a scope object:

• Add an xPC Target scope block to your Simulink model, build the model to
create a scope, and then use the target object method getscope to create a
scope object.

• Use the target object method addscope to create a scope, create a scope object
and assign the scope properties to the scope object.

A scope object has associated properties and methods specific to that object.

Scope Object Properties
Scope object properties let you select signals to acquire, set triggering modes,
and access signal information from the target application. You can view and
change these properties using scope object methods

7 Scope Object Reference

7-4

The properties for a scope object are listed in the following table. This table
includes a description of the properties and which properties you can change
directly by assigning a value.

Table 7-1: List of Scope Object Properties

Property Description Write

Application Name of the Simulink model associated to
this scope object.

ScopeId A numeric index unique for each scope.

Status Indicates whether data is being acquired,
the scope is waiting for a trigger, the scope
has been stopped (interrupted), or
acquisition is finished. Values are
’Acquiring’, ’Ready for being
Triggered’, ’Interrupted’, and
’Finished’.

Type Determines whether the scope is displayed
on the host computer or on the target
computer. Values are ’host’ and
’target’.

NumSamples Number of contiguous samples captured
during the acquisition of a data package.

Yes

NumPrePostSamples Number of samples collected before or
after a trigger event. The default value is
0. Entering a negative value collects
samples before the trigger event. Entering
a positive value collects samples after the
trigger event. If you set TriggerMode to
FreeRun, this property has no effect on
data acquisition.

Scope Object

7-5

Decimation A number n, where every nth sample is
acquired in a scope window.

Note This value is the same as Interleave
in a scope window.

Yes

TriggerMode Trigger mode for a scope. Valid values are
’FreeRun’ (default), ’Software’,
’Signal’, and ’Scope’.

Yes

TriggerSignal If TriggerMode=’Signal’, identifies which
block output signal to use for triggering
the scope. You identify the signal with a
signal index from the target object
property Signal.

Yes

TriggerLevel If TriggerMode=’Signal’, indicates the
value the signal has to cross to trigger the
scope and start acquiring data. The trigger
level can be crossed with either a rising or
falling signal.

Yes

TriggerSlope If TriggerMode=’Signal’, indicates
whether the trigger in on a rising or falling
signal. Values are ’Either’ (default),
’Rising’, or ’Falling’.

Yes

TriggerScope If TriggerMode=’Scope’, identifies which
scope to use for a trigger. A scope can be set
to trigger when another scope is triggered.
This is done by setting the slave scope
property TriggerScope to the scope index
of the master scope.

Yes

Mode Indicates how a scope displays the signals.
Values are ’Numerical’, ’Redraw’
(default), ’Sliding’, or ’Rolling’.

Yes

Table 7-1: List of Scope Object Properties

Property Description Write

7 Scope Object Reference

7-6

Scope Object Methods
The scope object methods allow you to control scopes on your target PC. The
methods are listed in the following table.

YLimit Minimum and maximum y-axis values.
This property can be set to ’auto’.

Yes

Grid Values are ’on’ or ’off’. Yes

StartTime Time within the total execution time, when
a scope begins acquiring a data package.

Time Contains the time data for a single data
package from a scope.

Data Contains the output data for a single data
package from a scope.

Signals List of signal indices from the target object
to display on the scope.

Table 7-2: List of Scope Object Methods

Scope Method Description

set Sets writable scope object properties to the specified
value. For a list of writable values, use
set(scope_object)

get Returns the value of readable properties from a scope
object.

addsignal Adds a signal to a scope and a scope object. The signal
is specified using the signal indices from the target
object.

Table 7-1: List of Scope Object Properties

Property Description Write

Scope Object

7-7

remsignal Removes a signal from a scope and a scope object. The
signal is specified using signal indices from the scope
object.

start Starts a scope, but does not necessarily start the
acquisition of data. The acquisition of data is
dependent on the trigger mode.

stop Stops a scope and the acquisition of a data.

trigger If TriggerMode=’Software’, starts the acquisition of
data from the target application.

Table 7-2: List of Scope Object Methods

Scope Method Description

7 Scope Object Reference

7-8

Using Scope Objects
xPC Target uses scope objects to represent scopes on the target PC. This
section shows some of the common tasks that you use with scope objects.

This section includes the following topics:

• “Displaying Scope Object Properties for a Single Scope”
• “Displaying Scope Object Properties for All Scopes”
• “Setting the Value of a Scope Property”
• “Getting the Value of a Scope Property”
• “Using the Method Syntax with Scope Objects”

Displaying Scope Object Properties for a Single
Scope
To list the properties of a single scope object sc1:

1 In the MATLAB window, type
sc1 = getscope(tg,1) or sc1 = tg.getscopes(1)

MATLAB creates the scope object sc1 from a previously created scope.

2 Type
sc1

The current scope properties are uploaded to the host PC, and then
MATLAB displays a list of the scope object properties with the updated
values. Because sc1 is a vector with a single element, you could also type,
sc1(1) or sc1([1]).

Note Only scopes with type host store data in the properties
scope_object.Time and scope_object.Data.

For a list of target object properties with a description, see “Target Object
Properties” on page 6-4.

Using Scope Objects

7-9

Displaying Scope Object Properties for All Scopes
To list the properties of all scope objects associated with the target object tg:

1 In the MATLAB window, type
getscope(tg) or tg.getscope

MATLAB displays a list of all scope objects associated with the target object.

2 Alternately, type
allscopes = getscope(tg) or allscopes = tg.getscope
allscopes

The current scope properties are uploaded to the host PC, and then
MATLAB displays a list of all the scope object properties with the updated
values. To list some of the scopes, use the vector index. For example, to list
the fist and third scopes, type allscopes([1,3]).

For a list of target object properties with a description, see “Target Object
Properties” on page 6-4.

Setting the Value of a Scope Property
With xPC Target you can use either a function syntax or an object property
syntax. The syntax set(scope_object, property_name,
new_property_value) can be replaced by:

• scope_object_vector.property_name = new_property_value.
• scope_object(index_vector).propety_name = new_property_value.

For example to change the trigger mode for the scope object sc1:

1 In the MATLAB window, type

sc1.triggermode = ’signal’

2 Alternately, you could type

set(sc1,’triggermode’, ’signal’) or sc1.set(’triggermode’, ’signal’)

Assignment for may also be done for a vector of scope objects, for example
allscopes([1, 2]).numsamples = 500. Notice, the indices are MATLAB vector
indices and not xPC Target scope indices.

To get a list of the writable properties, type set(scope_object).

7 Scope Object Reference

7-10

Note Method names are case-sensitive, but property names are not.

Getting the Value of a Scope Property
You can list a property value in the MATLAB window, or assign that value to
a MATLAB variable. With xPC Target you can use either a function syntax or
an object property syntax.

The syntax get(scope_object_vector, property_name) can be replaced by

• scope_object_vector.property_name
• scope_object_vector(index_vector).property_name

For example to assign the start time from the scope object sc1:

1 In the MATLAB window, type

beginrun = sc1.starttime

2 Alternately, you could type

beginrun = get(sc1,’starttime’) or sc1.get(’starttime’)

Assignment may also be done using a vector of scope objects, for example
scopetypes = allscopes([1, 2]).type. Notice, the indices are MATLAB vector
indices and not xPC Target scope indices.

To get a list of readable properties, type scope_object. Without assigning to
a variable, the property values are listed in the MATLAB window.

Note Method names are case-sensitive, but property name are not.

Using Scope Objects

7-11

Using the Method Syntax with Scope Objects
Use the method syntax to run a scope object method. The syntax
method_name(scope_object_vector, argument_list) can be replaced with:

• scope_object.method_name(argument_list)
• scope_object_vector(index_vector).method_name(list of arguments)

Unlike properties, for which partial but unambiguous names are permitted,
method names must be entered in full, and in lowercase. For example, to add
signals to the first scope in a vector of all scopes:

1 In the MATLAB window, type

allscopes(1).addsignal([0,1])

2 Alternately, you could type

addsignal(allscopes(1), [0,1])

addsignal

7-12

7addsignalPurpose Adds signals to a scope represented by a scope object

Syntax MATLAB command line

addsignal(scope_object_vector, signal_index_vector)

scope_object_vector.addsignal(signal_index_vector)

Target command line

addsignal scope_index = signal_index, signal_index, . . .

Arguments

Description Method of a scope object. The signals must be specified by their index, which
may be retrieve using the target object method getsignalid. If the
scope_object_vector has two or more scope objects, the same signals are
assigned to each scope.

Examples Add signals 0 and 1 from the target object tg to the scope object sc1. The signals
are added to the scope, and the scope object property Signals is updated to
include the added signals.

sc1 = getscope(tg,1)
addsignal(sc1,[0,1]) or sc1.addsignal([0,1])

Display a list of properties and values for the scope object sc1 with the property
Signals shown below.

sc1.Signals

Signals = 1 : Signal Generator
 0 : Integrator1

Other ways to add signals without using the method addsignal is to use the
scope object method set.

scope_object_vector Name of a single scope object, or the name of a
vector of scope objects.

signal_index_vector For one signal, use a single number. For two or
more signals, enclose numbers in brackets and
separate with commas.

scope_index Single scope index.

addsignal

7-13

set(sc1,’Signals’, [0,1]) or sc1.set(’signals’,[0,1],

Or to directly assign signal values to the scope object property Signals.

sc1.signals = [0,1].

See Also The xPC Target scope object methods remsignal and set. The target object
method addscope and getsignalid.

get

7-14

7getPurpose Return the property values for scope objects

Syntax MATLAB command line

get(scope_object_vector)

get(scope_object_vector, ’scope_object_property’)

get(scope_object_vector, scope_object_property_vector)

Arguments

Description Method of scope objects. Gets the value of readable scope object properties from
a scope object or the same property from each scope object in a vector of scope
objects.

Examples List all of the readable properties, along with their present values. This is given
in the form of a structure, whose fieldnames are the property names and field
values are property values.

get(sc)

List the value for the scope object property Type. Notice the property name is a
string, in quotes, and is not case-sensitive.

get(sc,'type’)
ans = Target

See Also The xPC Target scope object method set. The target object methods get and
set. The built in MATLAB functions get and set.

target_object Name of a target object

scope_object_vector Name of a single scope, or name of a vector of
scope objects

scope_object_property Name of a scope object property

remsignal

7-15

7remsignalPurpose Remove signals from a scope represented by a scope object

 Syntax MATLAB command line

remsignal(scope_object)
remsignal(scope_object, signal_index_vector)
scope_object.remsignal(signal_index_vector)

Target command line

remsignal scope_index = signal_index, signal_index, . . .

Arguments

Description Method for a scope object. The signals must be specified by their index, which
may be retrieved using the target object method getsignalid. If the
scope_object_vector has two or more scope object, the same signals are removed
from each scope. The argument SIGNALS is optional; if left out, all signals are
removed.

Examples Remove signals 0 and 1 from the scope represented by the scope object sc1.

sc1.get(’signals’)

ans= 0 1

Removed signals from the scope on the target PC with the scope object property
Signals updated.

remsignal(sc1,[0,1]) or sc1.remsignal([0,1])

See Also The xPC Target scope object method remsignal, and the target object method
getsignalid.

scope_object MATLAB object created with the target object
methods addscope or getscope.

signal_index_vector Index numbers from the scope object property
Signals. This argument is optional and if left out
all signals are removed.

signal_index Single signal index.

set

7-16

7setPurpose Change property values for scope objects

Syntax MATLAB command line

set(scope_object_vector)

set(scope_object_vector, property_name1, property_value1,
property_name2, property_value2, . . .)

scope_object_vector.set(’property_name1’, property_value1, ..)

set(scope_object, ’property_name’, property_valuse, . . .)

Arguments

Description Method for scope objects. Sets the properties of the scope object. Not all
properties are user-writable

Properties must be entered in pairs, or using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they have to both be
row vectors or both column vectors, and the corresponding values for properties
in property_name_vector are stored in property_value_vector.

The function set typically does not return a value. However, if called with an
explicit return argument, for example, a = set(target_object, property_name,
property_value), it returns the value of the properties after the indicated
settings have been made.

Examples Get a list of writable properties for a scope object.

sc1 = getscope(tg,1)
set(sc1)

xPC Scope Object:
 Writable Properties

scope_object Name of a scope object, or a vector of scope objects

property_name Name of a scope object property. Always use
quotes

property_value Value for a scope object property. Always use
quotes for character strings, quotes are optional
for numbers.

set

7-17

 NumSamples
 Decimation
 TriggerMode : [{FreeRun} | Software | Signal | Scope]
 TriggerSignal
 TriggerLevel
 TriggerSlope : [{Either} | Rising | Falling]
 TriggerScope
 Signals
 Mode : [Numerical | {Redraw} | Sliding | Rolling]
 YLimit
 Grid

The property value for the scope object sc1 is changed to on

sc1.set(’grid’, ’on’) or set(sc1, ’grid’, ’on’)

See Also The xPC Target scope object method get. The target object methods set and
get. The built in MATLAB functions get and set.

start

7-18

7startPurpose Start execution of a scope on a target PC

Syntax MATLAB command line

start(scope_object_vector)
scope_object_vector.start
+scope_object_vector

start(getscope(target_object, scope_index_vector))

Target PC command line

startscope scope_index
startscope ’all’

Arguments

Description Method for scope objects. Starts a scope on the target PC represented by a scope
object on the host PC. This method does not necessarily start data acquisition
which depends on the trigger settings. Before using this method, a scope must
be created. To create a scope, use the target object method addscope or add xPC
Target scope blocks to your Simulink model.

Examples Start one scope with the scope object sc1.

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
start(sc1) or sc1.start or +sc1

or type

start(getscope(tg,1))

Start two scopes.

target_object Name of a target object.

scope_object_vector Name of a single scope object, name of vector of
scope objects, list of scope object names in a vector
form [scope_object1, scope_object2], or the target
object method getscope which returns a
scope_object vector.

scope_index_vector Index for a single scope, or list of scope indices in
vector form.

scope_index Single scope index.

start

7-19

somescopes = getscope(tg,[1,2]) or somescopes=
tg.getscope([1,2])
start(somescopes) or somescopes.start

or type

sc1 = getscope(tg,1) or sc1 =tg.getscope(1)
sc2 = getscope(tg,2) or sc2 = tg.getscope(2)
start([sc1,sc2])

or type

start(getscope(tg,[1,2])

Start all scopes

allscopes = getscope(tg) or allscopes = tg.getscope
start(allscopes) or allscopes.start or +allscopes

or type

start(getscope(tg)) or start(tg.getscope)

See Also The xPC Target target object methods getscope and stop. The scope object
method stop.

stop

7-20

7stopPurpose Stop execution of a scope on the target PC.

 Syntax MATLAB command line

stop(scope_object_vector)
scope_object.stop
-scope_object

stop(getscope(target_object, scope_index_vector))

Target PC command line

stopscope scope_index
stopscope ’all’

Arguments

Description Method for a scope objects. Stops the scopes represented by the scope objects.

Examples Stop one scope represented by the scope object sc1.

stop(sc1) or sc1.stop or -sc1

Stop all scopes with a scope object vector allscopes created with the command
allscopes = getscope(tg) or allscopes = tg.getscope.

stop(allscopes) or allscopes.stop or -allscopes

or type

stop(getscope(tg)) or stop(tg.getscope)

target_object Name of a target object.

scope_object_vector Name of a single scope object, name of vector of
scope objects, list of scope object names in a vector
form [scope_object1, scope_object2], or the target
object method getscope which returns a
scope_object vector.

scope_index_vector Index for a single scope, or list of scope indices in
vector form.

scope_index Single scope index.

stop

7-21

See Also The xPC Target target object methods getscope, stop, and start. The scope
object method start.

trigger

7-22

7triggerPurpose Software trigger the start of data acquisition for one or more scopes.

Syntax MATLAB command line

trigger(scope_object_vector) or scope_object_vector.trigger

Arguments

Description Method for a scope object. If the scope object property TriggerMode has a value
of ’software’, then this function triggers the scope represented by the scope
object to acquire the number of data points in the scope object property
NumSamples.

Note Only scopes with type host store data in the properties scope_object.Time
and scope_object.Data.

Examples Set a single scope to software trigger, trigger the acquisition or one set of
samples, nd plot data.

sc1 = tg.addscope(‘host’,1) or sc1=addscope(tg,’host’,1)
sc1.triggermode = ’software’

tg.start, or start(tg), or +tg
sc1.start or start(sc1) or +sc1
sc1.trigger or trigger(sc1)

plot(sc1.time, sc1.data)

sc1.stop or stop(sc1) or -sc1
tg.stop or stop(tg) or -tg1

Set all scopes to software trigger and trigger to start.

allscopes = tg.getscopes
allscopes.triggermode = 'software'
allscopes.start or start(allscopes) or +allscopes
allscopes.trigger or trigger(allscopes)

scope_object_vector Name of a single scope object, name of a vector of
scope objects, list of scope object names in a vector
form [scope_object1, scope_object2], or the target
object method getscope which returns a
scope_object vector.

I-1

Index

A
adding

scope blocks 2-13
advanced tutorial 2-1

B
block library

in Simulink 2-7
with xPC Target 2-4

block parameters
defining 2-10
defining scope 2-16

boot disk, see target boot disk

C
changing

environment properties 5-16
changing properties

environment properties 5-14
command line interface

scope object 7-3
target object 6-3

commands
xPC Target 5-20

creating
boot disk 5-19
model with I/O blocks 2-3
model with scope blocks 2-13
target boot disk 5-17, 5-19

D
defining

I/O block parameters 2-10
scope block parameters 2-16

E
entering

environment properties 5-14
environment properties

changing 5-14, 5-16
list 5-12
loading 5-13
saving 5-13
updating 5-14, 5-16

G
getting

list of environment properties 5-12

I
I/O block library

access in Simulink 2-7
access in xPC Target 2-4

I/O block parameters
defining 2-10

I/O blocks
in Simulink model 2-3

L
list

environment properties 5-12
scope properties 7-3
target properties 6-4

loading
environment properties 5-13

Index

I-2

M
methods

scope object 7-6
target object 6-9, 6-11

P
parameters

defining block 2-10
defining scope blocks 2-16

properties
changing environment 5-16
environment list 5-12
scope object 7-3
target object 6-4
updating environment 5-16

S
saving

environment properties 5-13
scope blocks

adding to model 2-13
defining parameters 2-16
in Simulink model 2-13

scope object
command line interface 7-3
commands 7-3
methods 7-6
methods, see commands
properties 7-3

Setup window
using 5-12

Simulink
I/O block library 2-7

Simulink model
adding scope blocks 2-13

with I/O blocks 2-3
with scope blocks 2-13

T
target boot disk

creating 5-17, 5-19
target object

command line interface 6-3
commands 6-3
methods 6-9, 6-11
methods, see commands
properties 6-3, 6-4

target PC
creating boot disk 5-19

tutorial
advanced 2-1

U
updating

environment properties 5-14, 5-16
using

setup window 5-12
xPC Target commands 5-20
xPC Target setup window 5-12

X
xPC Target

commands 5-20
overview 1-3
Setup window 5-12
what is it? 1-3

	Introduction
	What Is xPC Target?

	Advanced Procedures
	I/O Driver Blocks
	xPC Target I/O Driver Blocks
	Adding I/O Blocks with the xPC Target Library
	Adding I/O Blocks with the Simulink Library Browser
	Defining I/O Block Parameters

	xPC Target Scope Blocks
	xPC Target Scope Blocks
	Adding xPC Target Scope Blocks
	Defining xPC Target Scope Block Parameters

	Target PC Command Line Interface
	Using Methods and Properties on the Target PC
	Target Object Methods
	Target Object Properties
	Scope Object Methods
	Scope Object Properties
	Using Variables on the Target PC
	Variable Commands

	Network Communication
	Web Interface
	Connecting the Web Interface through TCP/IP
	Connecting the Web Interface through RS232
	Syntax for the xpctcp2ser Command
	Using the Main Page
	Changing WWW Properties
	Viewing Signals with the Web Browser
	Using Scopes with the Web Browser
	Viewing and Changing Parameters with the Web Interface
	Changing Access Levels to the Web Browser

	User Datagram Protocol (UDP)
	What Is UDP?
	Why UDP?
	UDP Communication Setup
	UDP Receive Block
	UDP Send Block
	UDP Pack Block
	UDP Unpack Block
	UDP Byte Reversal Block.
	UDP Example

	Embedded Option
	Introduction
	DOSLoader Mode Overview
	StandAlone Mode Overview
	Architecture
	Restrictions

	Updating the xPC Target Environment
	Creating a DOS System Disk
	DOS Loader Target Applications
	Creating a Target Boot Disk for DOS Loader
	Creating a Target Application for DOS Loader

	Stand-Alone Target Applications
	Creating a Target Application for Stand-Alone
	Creating a Target Boot Disk for Stand-Alone
	Using Target Scope Blocks with Stand-Alone

	Environment Reference
	Environment
	Environment Properties
	Environment Functions

	Using Environment Properties and Functions
	Getting a List of Environment Properties
	Saving and Loading the Environment
	Changing Environment Properties with Graphical Interface
	Changing Environment Properties with Command Line Interface
	Creating a Target Boot Disk with Graphical Interface
	Creating a Target Boot Disk with Command Line Interface

	System Functions
	GUI Functions
	Test Functions
	xPC Target Demos

	Environment and System Function Reference

	Target Object Reference
	Target Object
	What is a Target Object?
	Target Object Properties
	Target Object Methods
	Target PC Commands

	Using Target Objects
	Displaying Target Object Properties
	Setting the Value of a Target Object Property from the Host PC
	Setting the Value of a Target Object Property from the Target PC
	Getting the Value of a Target Object Property
	Using the Method Syntax with Target Objects

	Scope Object Reference
	Scope Object
	What is a Scope Object?
	Scope Object Properties
	Scope Object Methods

	Using Scope Objects
	Displaying Scope Object Properties for a Single Scope
	Displaying Scope Object Properties for All Scopes
	Setting the Value of a Scope Property
	Getting the Value of a Scope Property
	Using the Method Syntax with Scope Objects

	Index

